CHAPTER 2 Modeling Distributions of Data

Slides:



Advertisements
Similar presentations
CHAPTER 2 Modeling Distributions of Data
Advertisements

Chapter 2: Modeling Distributions of Data
CHAPTER 3: The Normal Distributions Lecture PowerPoint Slides The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner.
Chapter 2.2 STANDARD NORMAL DISTRIBUTIONS. Normal Distributions Last class we looked at a particular type of density curve called a Normal distribution.
Do NOT glue (we’ll do that later)— simply.
+ Warm Up The graph below shows cumulative proportions plotted against GPA for a large public high school. What is the median GPA? a) 0.8b) 2.0c) 2.4d)
2.2 Density Curves and Normal Distributions. Exploring Quantitative Data In Chapter 1, we developed a kit of graphical and numerical tools for describing.
CHAPTER 3: The Normal Distributions ESSENTIAL STATISTICS Second Edition David S. Moore, William I. Notz, and Michael A. Fligner Lecture Presentation.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 2 Modeling Distributions of Data 2.2 Density.
CHAPTER 3: The Normal Distributions
The Standard Normal Distribution
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 2 Modeling Distributions of Data 2.2 Density.
Lecture PowerPoint Slides Basic Practice of Statistics 7 th Edition.
Chapter 2 Modeling Distributions of Data Objectives SWBAT: 1)Find and interpret the percentile of an individual value within a distribution of data. 2)Find.
+ Chapter 2: Modeling Distributions of Data Section 2.2 Normal Distributions The Practice of Statistics, 4 th edition - For AP* STARNES, YATES, MOORE.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 2 Modeling Distributions of Data 2.2 Density.
Continuous random variables
Relative Cumulative Frequency Graph
Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Entry Task Chapter 2: Describing Location in a Distribution
Describing Location in a Distribution
Do NOT glue (we’ll do that later)—simply type the data into List 1
CHAPTER 2 Modeling Distributions of Data
Good Afternoon! Agenda: Knight’s Charge-please wait for direction
Good Afternoon! Agenda: Knight’s Charge-please get started Good things
Sec. 2.1 Review 10th, z = th, z = 1.43.
CHAPTER 3: The Normal Distributions
Chapter 2: Modeling Distributions of Data
Density Curves and Normal Distribution
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Standard Normal Calculations
Chapter 2: Modeling Distributions of Data
Chapter 2 Data Analysis Section 2.2
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Warmup Normal Distributions.
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Honors Statistics The Standard Deviation as a Ruler and the Normal Model Chapter 6 Part 3.
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 3 Modeling Distributions of Data
Chapter 3: Modeling Distributions of Data
CHAPTER 3: The Normal Distributions
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
CHAPTER 3: The Normal Distributions
Mean and Median.
Chapter 2: Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
CHAPTER 2 Modeling Distributions of Data
Chapter 2: Modeling Distributions of Data
Presentation transcript:

CHAPTER 2 Modeling Distributions of Data 2.2 ( part 2) Density Curves and Normal Distributions

The Standard Normal Distribution All Normal distributions are the same if we measure in units of size σ from the mean µ as center. The standard Normal distribution is the Normal distribution with mean 0 and standard deviation 1. If a variable x has any Normal distribution N(µ,σ) with mean µ and standard deviation σ, then the standardized variable has the standard Normal distribution, N(0,1).

Normal Distribution Calculations We can answer a question about areas in any Normal distribution by standardizing and using Table A or by using technology. How To Find Areas In Any Normal Distribution Step 1: State the distribution and the values of interest. Draw a Normal curve with the area of interest shaded and the mean, standard deviation, and boundary value(s) clearly identified. Step 2: Perform calculations—show your work! Do one of the following: (i) Compute a z-score for each boundary value and use Table A or technology to find the desired area under the standard Normal curve; or (ii) use the normalcdf command and label each of the inputs. Step 3: Answer the question.

The Standard Normal Table The standard Normal Table (Table A) is a table of areas under the standard Normal curve. The table entry for each value z is the area under the curve to the left of z. Suppose we want to find the proportion of observations from the standard Normal distribution that are less than 0.81. We can use Table A: P(z < 0.81) = .7910 Z .00 .01 .02 0.7 .7580 .7611 .7642 0.8 .7881 .7910 .7939 0.9 .8159 .8186 .8212

Practice finding probability of area under the curve: Find the area under the standard normal curve to the left of – 1.35. P ( z < -1.35 ) = ____________ 2. Find the area to the right of .76. P ( z > .76) = _____________

3. Find the area to the left of 1.23. P( z < 1.23 ) = ____________   Determine the area under the normal curve that lies between -0.68 and 1.82. P ( - 0.68 < z < 1.82 ) = ________ 5. P ( z < - 1.96 or z > 1.96 ) = ______________

EXAMPLE : As reported by Runner’s World Magazine, the times of the finishers in the NYC 10K run are normally distributed in minutes: N ( 61, 9). Let “x” denote finishing time for the racers in the 10K run. Sketch the distribution of the variable x.   b. What percentage of finishers in the race have times exceeding 75 minutes?    c. What is the percentage of finishers in the race with times between 50 and 70 minutes?

Working Backwards: Normal Distribution Calculations Sometimes, we may want to find the observed value that corresponds to a given percentile. There are again three steps. How To Find Values From Areas In Any Normal Distribution Step 1: State the distribution and the values of interest. Draw a Normal curve with the area of interest shaded and the mean, standard deviation, and unknown boundary value clearly identified. Step 2: Perform calculations—show your work! Do one of the following: (i) Use Table A or technology to find the value of z with the indicated area under the standard Normal curve, then “unstandardize” to transform back to the original distribution; or (ii) Use the invNorm command and label each of the inputs. Step 3: Answer the question.

Example #1: Scores on the SAT verbal test in recent years follow approximately the N (505, 110) distribution. How high must a student score in order to place in the top 10% of all students taking the SAT ?

Example #2: As reported by the U. S Example #2: As reported by the U.S. National Center for Health Statistics, males who are 6 feet tall and between 18 and 24 years of age have a mean weight of 175 pounds. If the weights are normally distributed with a standard deviation of 14 pounds, obtain the 15th percentile of the weights.

Example #3: Scores on the Wechsler Adult Intelligence Scale ( a standard IQ test) for the 20 to 34 age group are approximately normally distributed with N( 110, 25). How high an IQ score is needed to be in the highest 25% ?

Assessing Normality The Normal distributions provide good models for some distributions of real data. Many statistical inference procedures are based on the assumption that the population is approximately Normally distributed. A Normal probability plot provides a good assessment of whether a data set follows a Normal distribution. Interpreting Normal Probability Plots If the points on a Normal probability plot lie close to a straight line, the plot indicates that the data are Normal. Systematic deviations from a straight line indicate a non-Normal distribution. Outliers appear as points that are far away from the overall pattern of the plot.

Density Curves and Normal Distributions ESTIMATE the relative locations of the median and mean on a density curve. ESTIMATE areas (proportions of values) in a Normal distribution. FIND the proportion of z-values in a specified interval, or a z-score from a percentile in the standard Normal distribution. FIND the proportion of values in a specified interval, or the value that corresponds to a given percentile in any Normal distribution. DETERMINE whether a distribution of data is approximately Normal from graphical and numerical evidence.