Optical Time Projection Chamber

Slides:



Advertisements
Similar presentations
FDWAVE : USING THE FD TELESCOPES TO DETECT THE MICRO WAVE RADIATION PRODUCED BY ATMOSPHERIC SHOWERS Simulation C. Di Giulio, for FDWAVE Chicago, October.
Advertisements

The performance of Strip-Fiber EM Calorimeter response uniformity, spatial resolution The 7th ACFA Workshop on Physics and Detector at Future Linear Collider.
Study of alpha backgrounds using flash ADC in the XMASS experiment Feb. 22nd, 2013 ICRR, Suzuki-Lab. M2 Osamu Takachio.
DMSAG 14/8/06 Mark Boulay Towards Dark Matter with DEAP at SNOLAB Mark Boulay Canada Research Chair in Particle Astrophysics Queen’s University DEAP-1:
August 12, 2000DPF Search for B +  K + l + l - and B 0  K* 0 l + l - Theoretical predictions and experimental status Analysis methods Signal.
Search for Long-Lived Particles at DØ Todd Adams Florida State University July 19, 2005 SUSY05 IPPP Durham.
The CMS Muon Detector Thomas Hebbeker Aachen July 2001 Searching for New Physics with High Energy Muons.
Beta and particle decay spectroscopy at the Super FRS Zenon Janas Nuclear Spectroscopy Division Warsaw University.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
ZSJ IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymentach NEMO-3 i SuperNEMO Kraków,
The Hard X-ray Modulation Telescope Mission
PERFORMANCE OF THE MACRO LIMITED STREAMER TUBES IN DRIFT MODE FOR MEASUREMENTS OF MUON ENERGY - Use of the MACRO limited streamer tubes in drift mode -Use.
14/02/2007 Paolo Walter Cattaneo 1 1.Trigger analysis 2.Muon rate 3.Q distribution 4.Baseline 5.Pulse shape 6.Z measurement 7.Att measurement OUTLINE.
TIME-RESOLVED OPTICAL SPECTROSCOPY OF HIGH-TEMPERATURE PLASMAS M.J. Sadowski  , K. Malinowski , E. Skladnik-Sadowska , M. Scholtz , A. Tsarenko ¤
Neutron Monitoring Detector in KIMS Jungwon Kwak Seoul National University 2003 October 25 th KPS meeting.
Nuclearite search with the ANTARES neutrino telescope Vlad Popa, for the ANTARES Collaboration Institute for Space Sciences, Bucharest – Magurele, Romania.
Status and first results of the KASCADE-Grande experiment
LASER CALIBRATION SYSTEM for STAR TPC Alexei Lebedev (BNL) for STAR collaboration  Design and description  Performance  Goals and results  Future developments.
Detection of electromagnetic showers along muon tracks Salvatore Mangano (IFIC)
Performance and applications of a  -TPC K. Miuchi a†, H. Kubo a, T. Nagayoshi a, Y. Okada a, R. Orito a, A. Takada a, A. Takeda a, T. Tanimori a, M. Ueno.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
VIeme rencontres du Vietnam
Tracking (wire chamber) Shield radon, neutron,  Source foil (40 mg/cm 2 ) Scintillator + PMT 2 modules 2  3 m 2 → 12 m 2 Background < 1 event / month.
The single shower calibration accuracy is about 6.7 degrees but the accuracy on the mean value (full data set calibration accuracy) scales down inversely.
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
Rare decay Opportunities at U-70 Accelerator (IHEP, Protvino) Experiment KLOD Joint Project : IHEP,Protvino JINR,Dubna INR, Moscow, RAS.
Electron tracking Compton camera NASA/WMAP Science Team  -PIC We report on an improvement on data acquisition for a Time Projection Chamber (TPC) based.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
First results from SND at VEPP-2000 S. Serednyakov On behalf of SND group VIII International Workshop on e + e - Collisions from Phi to Psi, PHIPSI11,
Villa Olmo, Como October 2001F.Giordano1 SiTRD R & D The Silicon-TRD: Beam Test Results M.Brigida a, C.Favuzzi a, P.Fusco a, F.Gargano a, N.Giglietto.
Study of Charged Hadrons in Au-Au Collisions at with the PHENIX Time Expansion Chamber Dmitri Kotchetkov for the PHENIX Collaboration Department of Physics,
P HOTON Y IELD DUE TO S CINTILLATION IN CF4 Bob Azmoun, Craig Woody ( BNL ) Nikolai Smirnov ( Yale University )
Vasilisa Lenivenko Vladimir Palichik (LHEP, JINR ) Alushta, June 2016.
Design and performance of the ALICE Muon Spectrometer
Nuclear emulsions One of the eldest particle detectors, still used in particle physics experiment (CHORUS, DONUT, OPERA) for its unique peculiarities:
K+e+γ using OKA detector
MDT second coordinate readout: status and perspectives
Simulation of Properties of COMPASS Drift-Chamber Prototypes
the charged kaon lifetime
“Performance test of a lead glass
Laser calibration systems
Sensitivity of Hybrid Resistive Plate Chambers to Low-Energy Neutrons
Low energy underground experimentation with a TPC G
A. Badertscher, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P
Measurement of surface radioactivity by Alpha/Beta detection
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
CMS muon detectors and muon system performance
WIMP search from XMASS-I fiducial volume data with
STAR Time-Projection Chamber
Results from OPERA Pablo del Amo Sánchez for the OPERA collaboration
2nd International Workshop on Double Beta Decay
Calibration, Simulations, and “Remaining” Issues
Neutral Particles.
Hall C KPP Demonstration March 10, 2017.
Ionization detectors ∆
A.Takada, A.Takeda, T.Tanimori
Background Reduction for Quantitative Gamma-ray Imaging with the Electron-Tracking Compton Camera in High Dose Areas May 26th, PS10A-10 T. Mizumoto,
Nuclearite search with the ANTARES neutrino telescope
Status of Neutron flux Analysis in KIMS experiment
in a wide halflife time (1÷500 ms)
J-PARC K1.8BRビームラインにおける 液体3He標的への K- ビーム照射実験(3)
GEANT Simulations and Track Reconstruction
PHYS 3446 – Lecture #16 Particle Detection Silicon Photo-Multipliers
Bi-Weekly Meeting 2004/09/08 Susumu Oda
Resistive Plate Chambers performance with Cosmic Rays
Ultra-high energy upward going muons in Super-Kamiokande II
Cluster Counting Drift Chamber as high precision tracker for ILC experiments G.F. Tassielli(1,2) (1) Dipartimento di Fisica dell’Universita’ del Salento,
PHYS 3446 – Lecture #16 Monday ,April 2, 2012 Dr. Brandt
PHYS 3446 – Lecture #17 Wednesday ,April 4, 2012 Dr. Brandt
Presentation transcript:

Optical Time Projection Chamber for radon and thoron detection Wojciech Dominik Zenon Janas Krzysztof Miernik Marek Pfützner Institute of Experimental Physics Warsaw University

Optical Time Projection Chamber PMT CCD visible light 1 ms/cm Gate 1 atm. gas: 49 % He 49 % Ar 1 % N2 1 % CH4 M. Ćwiok et al., IEEE TNS, 52 (2005) 2895

OTPC at Warsaw Materials used: Chamber active volume: 20 x 20 x 15 cm3 Stesalit fibreglass PCB plates Pyrex optical window

Registration of a particle CCD PMT

Principle of 3D track reconstruction z a vdt2 vdt1 Lxy Total track length: Inclination angle: vd– electron drift velocity  10 mm/ms

What one can measure with OTPC ? length and position on XY plane (from camera picture) length of projection on Z axis (from the length of the PMT signal) no Z coordinate energy (from the total track length) charge of the particle (from the energy loss) time and position correlation between succesive a-decays - no sensitivity for electrons

Example: 214Po a-decay CCD Dt= 5 ms PMT Lxy=115 mm

Example: energy loss along the particle track projection of CCD picture fit of Bethe-Bloch formula

Example: correlation between succesive a-decays T= 0 min a 222Rn T= 3 min a 218Po - tracks originate from the same XY position - track lengths compatible with the 222Rn and 218Po a energies

14 tracks starting from the center OTPC background measurement - 5 hours measurement - circles mark the beginning of the tracks Total of 260 tracks - most of them start from the walls 14 tracks starting from the center Y - position X - position

Tracks starting from the central region (16 x 16 x 15 cm3 gas volume ?) Background activity estimate

Search for 220Rn - a - 216Po - a decay - two triggers within 300 ms gate 2161 155 ms 216Po 9 cm 220Rn 5 ms

Range of a particles in Ar(50%) + He (50%) gas 1 atm 216Po 220Rn

Decays in the center (thoron gate)

Decays from the walls (thoron gate)

Time correlation between two a particles

Background thoron activity estimate

Super-Kamiokande radon detector 16x16 mm2 S = 2 (counts/day)/(1 mBq/m3) Background – 2.4 ± 1.3 counts/day Y. Takeuchi et al.. NIM A 421 (1999) 334

OTPC for radon detection 100 cm 50 cm 20 cm 15 cm 20 cm V = 6·10-3 m3 S = 6·10-3 m3 1 mBq/m3  24 h = 0.5 (counts/day) / (1 mBq/m3) V = 0.25 m3 S = 0.25 m3 1 mBq/m3  24 h = 21.6 (counts/day) / (1 mBq/m3) Background: 200 mBq/m3 radon 20 mBq/m3 thoron

220Rn decay products 220Rn 56 s 216Po 145 ms 212Po 300 ns 212Bi 61 m 212Pb 10.6 h 208Pb stable 212Bi 61 m 212Po 300 ns 208Tl 3 m 6.29 6.78 8.78 6.1

222Rn decay products 222Rn 3.8 d 218Po 3.1 m 214Po 164 ms 210Po 138 d 214Pb 27 m 210Pb 22.3 y 214Bi 20 m 214Po 164 ms 210Tl 1.3 m 5.49 7.69 5.45 6.00 206Pb stable 210Po 138 d 210Bi 5 d 206Tl 4.2 m 5.30 4.65

819