Synoptic-climatological evaluation of COST733 circulation classifications: Czech contribution Radan HUTH Monika CAHYNOVÁ Institute of Atmospheric Physics,

Slides:



Advertisements
Similar presentations
Is the climate changing? The way you present the data affects your judgment Chris Goodall At Magdalen College School, Oxford March 2010.
Advertisements

Multistage Sampling.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
Chapter 1 The Study of Body Function Image PowerPoint
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Detection of Hydrological Changes – Nonparametric Approaches
Document #07-12G 1 RXQ Customer Enrollment Using a Registration Agent Process Flow Diagram (Switch) Customer Supplier Customer authorizes Enrollment.
Document #07-12G 1 RXQ Customer Enrollment Using a Registration Agent Process Flow Diagram (Switch) Customer Supplier Customer authorizes Enrollment.
Document #07-2I RXQ Customer Enrollment Using a Registration Agent (RA) Process Flow Diagram (Move-In) (mod 7/25 & clean-up 8/20) Customer Supplier.
ENSEMBLES General Assembly, Prague, Czech Republic, November 2007 Potential WP Participants (known absentees underlined): DJF, DISAT, FMI, FUB, LUND,
Forecasting winter wheat yield in Ukraine using 3 different approaches
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Extended range forecasts at MeteoSwiss: User experience.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Arithmetic and Geometric Means
Determine Eligibility Chapter 4. Determine Eligibility 4-2 Objectives Search for Customer on database Enter application signed date and eligibility determination.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 10 second questions
CS1512 Foundations of Computing Science 2 Lecture 20 Probability and statistics (2) © J R W Hunter,
Duration CONSTRUCTION Opening Date EQUIP INSTALL. & TEST Incheon International Airport Control Tower Outcome Progress DESIGN & AWARD : AOR 36 MONTHS.
Richmond House, Liverpool (1) 26 th January 2004.
1 STA 536 – Experiments with a Single Factor Regression and ANOVA.
Break Time Remaining 10:00.
Department of Engineering Management, Information and Systems
On Comparing Classifiers : Pitfalls to Avoid and Recommended Approach
PP Test Review Sections 6-1 to 6-6
Mental Math Math Team Skills Test 20-Question Sample.
Page 1 NAE 4DVAR Oct 2006 © Crown copyright 2006 Mark Naylor Data Assimilation, NWP NAE 4D-Var – Testing and Issues EWGLAM/SRNWP meeting Zurich 9 th -12.
Oil & Gas Final Sample Analysis April 27, Background Information TXU ED provided a list of ESI IDs with SIC codes indicating Oil & Gas (8,583)
VOORBLAD.
Hypothesis Tests: Two Independent Samples
The North American Monsoon System: Recent Evolution and Current Status Update prepared by Climate Prediction Center / NCEP 11 June 2012.
1..
© 2012 National Heart Foundation of Australia. Slide 2.
A/C Final Project: Design Builder
Universität Kaiserslautern Institut für Technologie und Arbeit / Institute of Technology and Work 1 Q16) Willingness to participate in a follow-up case.
Module 17: Two-Sample t-tests, with equal variances for the two populations This module describes one of the most utilized statistical tests, the.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Take out the homework from last night then do, Warm up #1
Januar MDMDFSSMDMDFSSS
1. 2 No lecture on Wed February 8th Thursday 9 th Feb Friday 27 th Jan Friday 10 th Feb Thursday 14: :00 Friday 16:00 – 19:00 HS N.
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Clock will move after 1 minute
PSSA Preparation.
Module 20: Correlation This module focuses on the calculating, interpreting and testing hypotheses about the Pearson Product Moment Correlation.
Simple Linear Regression Analysis
Copyright © 2010 Pearson Addison-Wesley. All rights reserved. Chapter 13 One-Factor Experiments: General.
Physics for Scientists & Engineers, 3rd Edition
Select a time to count down from the clock above
CpSc 3220 Designing a Database
1 McGill University Department of Civil Engineering and Applied Mechanics Montreal, Quebec, Canada.
4/4/2015Slide 1 SOLVING THE PROBLEM A one-sample t-test of a population mean requires that the variable be quantitative. A one-sample test of a population.
Large-scale atmospheric circulation characteristics and their relations to local daily precipitation extremes in Hesse, central Germany Anahita Amiri Department.
Classifications of circulation patterns from the COST733 database: An assessment of synoptic- climatological applicability by two- sample Kolmogorov-Smirnov.
Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss Report on Workshop « Stratified verification by weather.
Some methods for the detection of links between climatic trends and changes in atmospheric circulation Monika Cahynová cas.cz Institute of.
COST 733 Harmonisation and Applications of Weather Type Classifications for European regions Status before Ioannina Working Group 2 Implementation and.
Brussels, 6-7 March 2008 AEMET CONTRIBUTION TO WG4 COST733 AEMET CONTRIBUTION TO WG4 COST733 María Jesús Casado María Asunción Pastor Sub. Gral. Climatología.
Quality control of daily data on example of Central European series of air temperature, relative humidity and precipitation P. Štěpánek (1), P. Zahradníček.
Extremes in Surface Climate Parameters and Atmospheric Circulation Patterns in Eastern Germany and Estonia Andreas Hoy.
Simulated and Observed Atmospheric Circulation Patterns Associated with Extreme Temperature Days over North America Paul C. Loikith California Institute.
APPLICATION IN CLIMATOLOGY 2: LONG-TERM TRENDS IN PERSISTENCE Radan HUTH, Monika CAHYNOVÁ, Jan KYSELÝ Radan HUTH, Monika CAHYNOVÁ, Jan KYSELÝ.
WTCs over Europe and surface ozone in Poland Magdalena Bogucka Institute of Meteorology and Water Management Warsaw, Poland
Presentation transcript:

Synoptic-climatological evaluation of COST733 circulation classifications: Czech contribution Radan HUTH Monika CAHYNOVÁ Institute of Atmospheric Physics, Prague, Czech Republic

WHAT? behaviour of surface climate / weather elements –under a single type versus –under other types or in all data

HOW? several different (complementary) approaches similar analyses also done in Augsburg by Christoph Beck & others

HOW? goodness-of-fit test: distribution under one type versus distribution under all other types / in all data –2-sample Kolmogorov-Smirnov test explained variance ratio of std.dev.: within-type / overall long- term correlation of time series: real vs. reconstructed (mean value of each type)

a) goodness-of-fit testing evaluates how well a classif. stratifies surface weather (climate) conditions 2-sample Kolmogorov-Smirnov test equality of distributions of the climate element under one type against under all the other types x

a) goodness-of-fit testing 73 classifications from the v1.2 release of COST733 database domains –00 (whole Europe) –07 (central Europe) winter (DJF) & summer (JJA) Jan 1958 – Feb European stations (ECA&D database) surface climate variables –maximum temperature –minimum temperature

a) goodness-of-fit testing at each station types for which the K-S test rejects the equality of distributions are counted the larger the count, the better the stratification at each station: methods ranked by the %age of well separated classes (= rejected K-S tests) for each classification: ranks averaged over stations area mean rank final rank of the classification

RANKING OF CLASSS

Tmax, DJF, dom. 00~9~18~27 Enke & Spekat676 Erpicum Z Erpicum SLP Beck (GWT)81011 Kirchhofer23 Litynski19912 Lund Lamb (Jenk.-Coll.)424 neural nets P27 (Kruizinga)168 PCACA (Rasilla)13 14 PCAXTR (Esteban)912- PCAXTRK1218- Petisco Sandra757 Sandra-S235 T-mode PCA WLKC Hess & Brezowsky3-2 objective Hess&Brez--1 obj. H&B – SLP--3 Peczely11-- Perret--9 Schüepp--13 ZAMG--24

Tmax, DJF, dom. 00~9~18~27Σ Enke & Spekat67619 Erpicum Z Erpicum SLP Beck (GWT) Kirchhofer23 69 Litynski Lund Lamb (Jenk.-Coll.)42410 neural nets P27 (Kruizinga)16815 PCACA (Rasilla) PCAXTR (Esteban)912-- PCAXTRK Petisco Sandra75719 Sandra-S23510 T-mode PCA WLKC Hess & Brezowsky3-2- objective Hess&Brez--1- obj. H&B – SLP--3- Peczely11--- Perret--9- Schüepp--13- ZAMG--24-

Tmax, DJF, dom. 00~9~18~27Σrank Enke & Spekat Erpicum Z Erpicum SLP Beck (GWT) Kirchhofer Litynski Lund Lamb (Jenk.-Coll.) neural nets P27 (Kruizinga) PCACA (Rasilla) PCAXTR (Esteban) PCAXTRK Petisco Sandra Sandra-S T-mode PCA WLKC Hess & Brezowsky3-2-- objective Hess&Brez--1-- obj. H&B – SLP--3-- Peczely Perret--9-- Schüepp ZAMG--24--

Tmax, DJF, dom. 00~9~18~27Σrank Enke & Spekat Erpicum Z Erpicum SLP Beck (GWT) Kirchhofer Litynski Lund Lamb (Jenk.-Coll.) neural nets P27 (Kruizinga) PCACA (Rasilla) PCAXTR (Esteban) PCAXTRK Petisco Sandra Sandra-S T-mode PCA WLKC Hess & Brezowsky3-2-- objective Hess&Brez--1-- obj. H&B – SLP--3-- Peczely Perret--9-- Schüepp ZAMG--24--

Tmax, DJF, dom. 00~9~18~27Σrank Enke & Spekat Erpicum Z Erpicum SLP Beck (GWT) Kirchhofer Litynski Lund Lamb (Jenk.-Coll.) neural nets P27 (Kruizinga) PCACA (Rasilla) PCAXTR (Esteban) PCAXTRK Petisco Sandra Sandra-S T-mode PCA WLKC Hess & Brezowsky3-2-- objective Hess&Brez--1-- obj. H&B – SLP--3-- Peczely Perret--9-- Schüepp ZAMG Tmin, DJF, dom. 00~9~18~27Σrank Enke & Spekat Erpicum Z Erpicum SLP Beck (GWT) Kirchhofer Litynski Lund Lamb (Jenk.-Coll.) neural nets P27 (Kruizinga) PCACA (Rasilla) PCAXTR (Esteban) PCAXTRK Petisco Sandra Sandra-S11241 T-mode PCA WLKC Hess & Brezowsky5-3-- objective Hess&Brez--1-- obj. H&B – SLP--5-- Peczely Perret--9-- Schüepp ZAMG--24--

Tmax, DJF, dom. 00~9~18~27Σrank Enke & Spekat Erpicum Z Erpicum SLP Beck (GWT) Kirchhofer Litynski Lund Lamb (Jenk.-Coll.) neural nets P27 (Kruizinga) PCACA (Rasilla) PCAXTR (Esteban) PCAXTRK Petisco Sandra Sandra-S T-mode PCA WLKC Hess & Brezowsky3-2-- objective Hess&Brez--1-- obj. H&B – SLP--3-- Peczely Perret--9-- Schüepp ZAMG Tmin, DJF, dom. 00~9~18~27Σrank Enke & Spekat Erpicum Z Erpicum SLP Beck (GWT) Kirchhofer Litynski Lund Lamb (Jenk.-Coll.) neural nets P27 (Kruizinga) PCACA (Rasilla) PCAXTR (Esteban) PCAXTRK Petisco Sandra Sandra-S11241 T-mode PCA WLKC Hess & Brezowsky5-3-- objective Hess&Brez--1-- obj. H&B – SLP--5-- Peczely Perret--9-- Schüepp ZAMG Tmax, DJF, dom. 07~9~18~27Σrank Enke & Spekat Erpicum Z Erpicum SLP Beck (GWT) Kirchhofer Litynski Lund Lamb (Jenk.-Coll.) neural nets P27 (Kruizinga) PCACA (Rasilla) PCAXTR (Esteban) PCAXTRK Petisco Sandra Sandra-S T-mode PCA WLKC Hess & Brezowsky2-2-- objective Hess&Brez--3-- obj. H&B – SLP--6-- Peczely Perret Schüepp ZAMG better in large domainbetter in small domain

b) other criteria selection of classifications: 26 –8 classs for ~9, ~18, ~27 types –Hess&Brezowsky: GWL (29 types), GWT (10 types) domain 07 (central Europe) separate analysis for Jan, Apr, Jul, Oct stations in the Czech Republic 8 surface climate variables –temperature min, max, mean –precipitation amount, occurrence –cloudiness, sunshine duration, relative humidity

b) other criteria criteria: –explained variance –normalized within-type std.dev. –correlation real vs. reconstructed series averaged over stations and variables ~9 types~18 types~27 typesH&B

b) other criteria summarizing: ranking by averaged ranks –overall –sensitivity to evaluation criterion season number of types

Rankings all criteriaseasonno. of types EVSTDCORJanAprJulOct~9~18~27 H&B Litynski GWT SANDRA CKMeans Petisco Lund TPCA P K-S test, TX, DJF

CONCLUSIONS most criteria highly sensitive to the number of types to alleviate this: –sort classs by the approx. no. of types –rank in each group separately different criteria may yield different ranking of class. methods Hess&Brezowsky is most frequently counted as best