CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,

Slides:



Advertisements
Similar presentations
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Advertisements

H 2 CuF An overview of H 2 MX complexes G.S. Grubbs II, D.J. Frohman, Z. Yu, S.E. Novick TH13, Columbus 2013 Inorg. Chem. 52, (2013).
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
HYDROGEN INTERACTION WITH METAL HALIDES: THE NUCLEAR QUADRUPOLE COUPLING CONSTANT OF GOLD IN THE p-H 2 -AuCl COMPLEX AND TRENDS IN THE OTHER HYDROGEN-COINAGE.
MONITORING REACTION PRODUCTS USING CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY Derek S. Frank, Daniel A. Obenchain, Wei Lin, Stewart E. Novick,
Measurement of the Vibrational Population Distribution of Barium Sulfide, Seeded in an Argon Supersonic Expansion, Following Production Through the Reaction.
Microwave Rotational Spectroscopy
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
A FABRY-PERÓT CAVITY PULSED FOURIER TRANSFORM W-BAND SPECTROMETER WITH A PULSED NOZZLE SOURCE. GARRY S. GRUBBS II, CHRISTOPHER T. DEWBERRY AND STEPHEN.
Susanna Stephens H 2 O  AgF characterised by Rotational Spectroscopy.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
PURE ROTATIONAL SPECTRA OF THE REACTION PRODUCTS OF LASER ABLATED THORIUM METAL AND OXYGEN MOLECULES ENTRAINED WITHIN SUPERSONIC EXPANSIONS OF NOBLE GASES.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
HYPERFINE SPLITTING AND ROTATIONAL ANALYSIS OF THE DIATOMIC MOLECULE ZINC MONOSULFIDE, ZnS DANIEL J. FROHMAN, G. S. GRUBBS II AND STEWART E. NOVICK O.S.U.
The 68 th International Symposium on Molecular Spectroscopy, June 2013 Fang Wang a, Allan Adam b and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
OSU 06/18/08 Ultrabroadband Rotational Spectroscopy: Novel Applications of a Shape Sensitive Detector BRIAN C. DIAN Purdue University Department of Chemistry.
Microwave Spectra and Structures of H 2 S-CuCl and H 2 O-CuCl Nicholas R. Walker, Felicity J. Roberts, Susanna L. Stephens, David Wheatley, Anthony C.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
Daniel P. Zaleski, Hansjochen Köckert, Susanna L. Stephens, Nick R. Walker School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne,
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
CONFORMATIONS AND BARRIERS TO METHYL GROUP INTERNAL ROTATION IN TWO ASYMMETRIC ETHERS: PROPYL METHYL ETHER AND BUTYL METHYL ETHER. TC-06: June 19 th, 2012.
The Rotational Spectra of Cyclohexene Oxide and Its Argon van der Waals Complex DANIEL J. FROHMAN, STEWART E. NOVICK AND WALLACE C. PRINGLE Wesleyan University.
June 25, th International Symposium on Molecular Spectroscopy Hyperfine Resolved Pure Rotational Spectroscopy of ScN, YN, and BaNH (X 1  + ):
June 18, rd International Symposium On Molecular Spectroscopy Gas-Phase Rotational Spectrum Of HZnCN (Χ 1 Σ + ) by Fourier Transform Microwave Techniques.
June 20, rd International Symposium On Molecular Spectroscopy Microwave Spectrum And Structure Determination Of the CCP ( X 2 П Ω ) Radical Ming.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
N 2 -CO 2 Consequences for Global Warming? Daniel Frohman Wesleyan University TH01 June 22, 2010.
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Pure Rotational Spectra of the Rare Isotopologues of TiO (X 3 Δ r ) Andrew P. Lincowski, DeWayne T. Halfen, and Lucy M. Ziurys Department of Chemistry.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
The Rotational Spectroscopy of SrS Kerry C. Etchison, Chris T. Dewberry and Stephen A. Cooke Department of Chemistry, University of North Texas P.O. Box.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
The Common Chlorine Nuclear Electric Quadrupole Coupling Tensor for Acyl Chlorides R. A. Powoski and S. A. Cooke.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Christopher T. Dewberry, Garry S
MICROWAVE OBSERVATION OF THE O2-CONTAINING COMPLEX, O2-HCl
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
A Chirped Pulse Fourier Transform Microwave (CP-FTMW) Spectrometer with Laser Ablation Source to Search for Actinide-Containing Molecules and Noble Metal.
The Pure Rotational Spectrum of KO
Spectroscopy in support of parity nonconservation measurements: the A2Π-X2Σ+(0,0) of Barium Monofluoride Anh T. Le, Sarah Frey and Timothy C. Steimle Department.
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
MICROWAVE OBSERVATION OF THE VAN DER WAALS COMPLES O2-CO
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
FT Microwave and MMW Spectroscopy of the H2-DCN Molecular Complex
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Department of Chemistry
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
Jinjun Liu, Ming-Wei Chen, John T. Yi,
G. S. Grubbs IIa, Derek S. Frankb, Daniel A. Obenchainb, S. A
MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO
THE STRUCTURE OF PHENYLGLYCINOL
RH12, 70th International Symposium on Molecular Spectroscopy
Nuclear Quadrupole Coupling in SiH2I2 Due to the Presence of Two Iodine Nuclei Discuss the Structural resolution of di-iodosilane using predictive methods.
AN INVESTIGATION OF THE DIPOLE FORBIDDEN TRANSITION EFFECTS IN BROMOFLUOROCARBONS AS IT PERTAINS TO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE USING CP-FTMW.
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
ASSIGNMENT OF THE PERFLUOROPROPIONIC ACID-FORMIC ACID COMPLEX AND THE DIFFICULTIES OF INCLUDING HIGH Ka TRANSITIONS Daniel A. Obenchain, Eric A. Arsenault,
Wei Lin, Anan Wu, Zin Lu, Daniel A. Obenchain, Stewart E. Novick
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
Presentation transcript:

CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN, STEWART E. NOVICK Wesleyan University, Middletown, CT, USA S. A. COOKE University of North Texas, Denton, TX,USA

Complexities Isotopes Nuclear Spin Electronic Spin 10 isotopes of Tin 2 isotopes of Chlorine Nuclear Spin Chlorine I = 1.5 Some Tin I = 0.5 Electronic Spin 2Πr ground state Species Abundance Nuclear Spin 112Sn 0.97 % 114Sn 0.66 % 115Sn 0.34 % 0.5 116Sn 14.54 % 117Sn 7.68 % 118Sn 24.22 % 119Sn 8.59 % 120Sn 32.58 % 122Sn 4.63 % 124Sn 5.79 % 35Cl 75.78 % 1.5 37Cl

Hund’s Cases Case c Case a C.H. Townes and A.L. Schawlow, Microwave Spectroscopy (Dover Publications, Inc., New York, 1975)

What is considered “heavy”, or, rather, when do we start to move into case c?

In Conjunction

Walker-Gerry Ablation Nozzle Similar to Smalley Nozzle

2, -1, 3/2, 3← 1, 1, 1/2, 2; e parity Cavity Measurement: Sample Spectrum 2, -1, 3/2, 3← 1, 1, 1/2, 2; e parity Cavity Measurement: 10147.1840 MHz 2, -1,3/2, 3← 1, 1, 1/2, 2; e parity Chirp Measurement: 10147.1873 MHz

Manifestation of Complexity Λ-doubling 120Sn35Cl Λ-doubling 118Sn35Cl Manmade; Ar-Cl2 Complex Others: Magnetic Hyperfine- Cl Nuclear Quadrupole Coupling- Cl Magnetic Coupling- Tin UP TO 20 ISOTOPOLOGUES!!!!

120Sn35Cl (2Π1/2,v=0) Parameters Literature1 Chirp Fit B0 /MHz 3352.6 (4) 3345.545(1) D0 /kHz 1.34 (4) 1.32(8) p0 /MHz -268.(8) -256.366(3) A0 /MHz 70704900 (900) 70704941.99 (held) AD_0 /MHz 6.9 (1) 6.895 (held) a /MHz --------- 33.534(3) d /MHz 13.895(3) eQq1(Cl) /MHz -25.01(1) RMS /kHz 4.96 Attributed Uncertainty of 15 kHz given to all CP-FTMW measurements 1. N. Badowski, W. Zyrnicki, and J. Borkowska-Burnecka, J. Phys. B: At. Mol. Phys., 20 (1987) 531.

Energy Levels of 120Sn35Cl ~770 MHz p ~ -260 MHz Split=-p(J+0.5)

Chirp Fits Parameter 120Sn35Cl 118Sn35Cl 116Sn35Cl 120Sn37Cl B0 /MHz 3345.545(1) 3358.335(2) 3371.561(2) 3205.9094(9) D0 /kHz 1.32(8) 1.3(1) 1.3(2) 0.99(7) p0 /MHz -256.366(3) -257.36(4) -258.38(5) -245.587(2) A0 /MHz 70704941.991 AD_0 /MHz 6.8951 a /MHz 33.534(3) 33.535(5) 33.526(7) 27.912(3) d /MHz 13.895(3) 13.898(4) 13.889(7) 11.571(3) eQq1(Cl) /MHz -25.01(1) -25.00(2) -25.02(3) -19.72(1) RMS2 /kHz 4.96 7.51 6.06 2.17 Attributed Uncertainty of 15 kHz given to all CP-FTMW measurements 1Held to the Literature Values

Zeeman Splitting 2, -1, 3/2, 3← 1, 1, 1/2, 2 For a Free Electron: W. Gordy and R. L Cook, Microwave Molecular Spectra: Techniques in Chemistry Vol. XVIII, Wiley, New York, 1984. For a Free Electron: gs = 2.0023 RA08 66th Ohio State Conference For a 2Π1/2, Λ = 1, Σ =1/2 gJ ≅ 0 (less than 1 kHz) We expect no splitting! With Earth’s Magnetic Field ~1/2 Gauss Bucking the Earth’s Magnetic Field The slight Zeeman splitting ⇓ NOT pure case a 1

Chirp/Cavity Comparison Parameter 120Sn35Cl Chirp 120Sn35Cl Cavity B0 /MHz 3345.545(1) D0 /kHz 1.32(8) 1.38(9) p0 /MHz -256.366(3) -256.368(3) A0 /MHz 70704941.991 AD_0 /MHz 6.8951 a /MHz 33.534(3) 33.536(3) d /MHz 13.895(3) 13.898(2) eQq1(Cl) /MHz -25.01(1) -25.00(1) Number of Lines 22 17 RMS /kHz 4.96 3.82

Magnetic Hyperfine Species a d Reference 12C35Cl 80.199(54) 82.212(37) 28Si35Cl 43.67(39) 46.40(94) 2 74Ge35Cl Not Determined 3 120Sn35Cl 33.534(3) 13.895(3) This Work 208Pb35Cl 30.17(4) -40.83(4) 4 Y. Endo, S. Saito, and E. Hirota, J. Mol. Spectr., 94 (1982) 199. M. Tanimoto and S. Saito, Y. Endo, and E. Hirota, J. Mol. Spectr., 103 (1984) 330. K. Tanaka, H. Honjou, M. Tsuchiya, and T. Tanaka, J. Mol. Spectr., 251 (2008) 369. C. T. Dewberry, G. S. Grubbs II, K. C. Etchison, and S. A. Cooke. 65th Ohio State University International Symposium, RC07.

Comparisons of eQq1 Species eQq1 value Reference 12C35Cl -34.26(13) 1 28Si35Cl -23.13(96) 2 74Ge35Cl Not Reported 3 120Sn35Cl -25.01(1) This Work 208Pb35Cl -24.9(1) 4 Y. Endo, S. Saito, and E. Hirota, J. Mol. Spectr., 94 (1982) 199. M. Tanimoto and S. Saito, Y. Endo, and E. Hirota, J. Mol. Spectr., 103 (1984) 330. K. Tanaka, H. Honjou, M. Tsuchiya, and T. Tanaka, J. Mol. Spectr., 251 (2008) 369. C. T. Dewberry, G. S. Grubbs II, K. C. Etchison, and S. A. Cooke. 65th Ohio State University International Symposium, RC07.

Conclusions 4 isotopologues have been fit with the chirped pulse data and 1 isotopologue with the cavity Λ – doubling observed and explained Nuclear Magnetic and Quadrupole Coupling data compare well with the literature trends of other tetrel chlorides Zeeman splitting suggests not purely Hund’s case a

Acknowledgements NSF CHE-1011214 for Wesleyan NSF and DOE for University of North Texas