Chapter 12 Simple Linear Regression and Correlation 12.1 - The Simple Linear Regression Model 12.2 - Estimating Model Parameters 12.3 - Inferences About the Slope Parameter 1 12.4 - Inferences Concerning Y|X* and the Prediction of Future Y Values 12.5 - Correlation
Testing for association between two POPULATION variables X and Y… Parameter Estimation via SAMPLE DATA … Categorical variables Numerical variables Chi-squared Test ??????? Categories of X Categories of Y PARAMETERS Means: Variances: Covariance: Examples: X = Disease status (D+, D–) Y = Exposure status (E+, E–) X = # children in household (0, 1-2, 3-4, 5+) Y = Income level (Low, Middle, High)
Parameter Estimation via SAMPLE DATA … Numerical variables ??????? STATISTICS PARAMETERS PARAMETERS Means: Means: Variances: Variances: Covariance: Covariance: (can be +, –, or 0)
x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Parameter Estimation via SAMPLE DATA … Numerical variables x1 x2 x3 x4 … xn y1 y2 y3 y4 yn ??????? STATISTICS PARAMETERS PARAMETERS Y Means: Means: JAMA. 2003;290:1486-1493 Variances: Variances: Scatterplot (n data points) Covariance: Covariance: (can be +, –, or 0) X
x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Parameter Estimation via SAMPLE DATA … Numerical variables x1 x2 x3 x4 … xn y1 y2 y3 y4 yn ??????? STATISTICS PARAMETERS PARAMETERS Y Means: Means: JAMA. 2003;290:1486-1493 Variances: Variances: Scatterplot (n data points) Covariance: Covariance: (can be +, –, or 0) Does this suggest a linear trend between X and Y? X If so, how do we measure it?
LINEAR Testing for association between two population variables X and Y… ^ Numerical variables ??????? PARAMETERS Means: Variances: Covariance: Linear Correlation Coefficient: Always between –1 and +1
x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Parameter Estimation via SAMPLE DATA … Numerical variables x1 x2 x3 x4 … xn y1 y2 y3 y4 yn ??????? STATISTICS PARAMETERS PARAMETERS Y Means: Means: JAMA. 2003;290:1486-1493 Variances: Variances: Scatterplot (n data points) Covariance: Covariance: (can be +, –, or 0) Linear Correlation Coefficient: Always between –1 and +1 X
Parameter Estimation via SAMPLE DATA … Example in R (reformatted for brevity): Numerical variables x1 x2 x3 x4 … xn y1 y2 y3 y4 yn > pop = seq(0, 20, 0.1) > x = sort(sample(pop, 10)) 1.1 1.8 2.1 3.7 4.0 7.3 9.1 11.9 12.4 17.1 > y = sample(pop, 10) 13.1 18.3 17.6 19.1 19.3 3.2 5.6 13.6 8.0 3.0 ??????? STATISTICS PARAMETERS PARAMETERS Y > c(mean(x), mean(y)) 7.05 12.08 > var(x) 29.48944 > var(y) 43.76178 Means: Means: JAMA. 2003;290:1486-1493 Variances: Variances: plot(x, y, pch = 19) Scatterplot n = 10 (n data points) Covariance: Covariance: > cov(x, y) -25.86667 (can be +, –, or 0) Linear Correlation Coefficient: Always between –1 and +1 > cor(x, y) -0.7200451 X
Parameter Estimation via SAMPLE DATA … Numerical variables x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Linear Correlation Coefficient: Always between –1 and +1 Y JAMA. 2003;290:1486-1493 r measures the strength of linear association Scatterplot (n data points) X
Parameter Estimation via SAMPLE DATA … Numerical variables x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Linear Correlation Coefficient: Always between –1 and +1 Y JAMA. 2003;290:1486-1493 r measures the strength of linear association IQ Scatterplot (n data points) Head circum –1 0 +1 r positive linear correlation negative linear correlation X
Parameter Estimation via SAMPLE DATA … Numerical variables x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Linear Correlation Coefficient: Always between –1 and +1 Y JAMA. 2003;290:1486-1493 r measures the strength of linear association Body Temp Scatterplot (n data points) Age –1 0 +1 r positive linear correlation negative linear correlation X
Parameter Estimation via SAMPLE DATA … Numerical variables x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Linear Correlation Coefficient: Always between –1 and +1 Y JAMA. 2003;290:1486-1493 r measures the strength of linear association r measures the strength of linear association Profit Scatterplot (n data points) Price –1 0 +1 r positive linear correlation negative linear correlation X
Parameter Estimation via SAMPLE DATA … Numerical variables x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Linear Correlation Coefficient: Always between –1 and +1 Y JAMA. 2003;290:1486-1493 r measures the strength of linear association r measures the strength of linear association Profit Scatterplot (n data points) Price –1 0 +1 r A strong positive correlation exists between ice cream sales and drowning. Cause & Effect? NOT LIKELY… “Temp (F)” is a confounding variable. A strong positive correlation exists between ice cream sales and drowning. Cause & Effect? positive linear correlation negative linear correlation X
Parameter Estimation via SAMPLE DATA … Numerical variables x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Linear Correlation Coefficient: Always between –1 and +1 Y JAMA. 2003;290:1486-1493 r measures the strength of linear association > cor(x, y) -0.7200451 Profit Scatterplot (n data points) Price –1 0 +1 r positive linear correlation negative linear correlation X
Test Statistic for p-value Testing for linear association between two numerical population variables X and Y… Now that we have r, we can conduct HYPOTHESIS TESTING on Linear Correlation Coefficient Test Statistic for p-value Linear Correlation Coefficient 2 * pt(-2.935, 8) p-value = .0189 < .05
“Response = Model + Error” Parameter Estimation via SAMPLE DATA … If such an association between X and Y exists, then it follows that for any intercept 0 and slope 1, we have… Linear Correlation Coefficient: r measures the strength of linear association “Response = Model + Error” > cor(x, y) -0.7200451 Find estimates and for the “best” line in what sense??? Residuals
“Response = Model + Error” Parameter Estimation via SAMPLE DATA … SIMPLE LINEAR REGRESSION via the METHOD OF LEAST SQUARES If such an association between X and Y exists, then it follows that for any intercept 0 and slope 1, we have… Linear Correlation Coefficient: r measures the strength of linear association “Response = Model + Error” > cor(x, y) -0.7200451 Find estimates and for the “best” line “Least Squares Regression Line” i.e., that minimizes in what sense??? Residuals
“Response = Model + Error” SIMPLE LINEAR REGRESSION via the METHOD OF LEAST SQUARES If such an association between X and Y exists, then it follows that for any intercept 0 and slope 1, we have… Linear Correlation Coefficient: r measures the strength of linear association “Response = Model + Error” > cor(x, y) -0.7200451 Find estimates and for the “best” line i.e., that minimizes Residuals Check
SIMPLE LINEAR REGRESSION via the METHOD OF LEAST SQUARES X 1.1 1.8 2.1 predictor X 1.1 1.8 2.1 3.7 4.0 7.3 9.1 11.9 12.4 17.1 Y 13.1 18.3 17.6 19.1 19.3 3.2 5.6 13.6 8.0 3.0 observed response > cor(x, y) -0.7200451 Find estimates and for the “best” line i.e., that minimizes Residuals
SIMPLE LINEAR REGRESSION via the METHOD OF LEAST SQUARES X 1.1 1.8 2.1 predictor X 1.1 1.8 2.1 3.7 4.0 7.3 9.1 11.9 12.4 17.1 Y 13.1 18.3 17.6 19.1 19.3 3.2 5.6 13.6 8.0 3.0 observed response fitted response > cor(x, y) -0.7200451 Find estimates and for the “best” line i.e., that minimizes Residuals
~ E R C I S SIMPLE LINEAR REGRESSION via the METHOD OF LEAST SQUARES X predictor X 1.1 1.8 2.1 3.7 4.0 7.3 9.1 11.9 12.4 17.1 Y 13.1 18.3 17.6 19.1 19.3 3.2 5.6 13.6 8.0 3.0 ~ E R C I S observed response fitted response > cor(x, y) -0.7200451 Find estimates and for the “best” line i.e., that minimizes Residuals
~ E R C I S SIMPLE LINEAR REGRESSION via the METHOD OF LEAST SQUARES X predictor X 1.1 1.8 2.1 3.7 4.0 7.3 9.1 11.9 12.4 17.1 Y 13.1 18.3 17.6 19.1 19.3 3.2 5.6 13.6 8.0 3.0 ~ E R C I S observed response fitted response residuals > cor(x, y) -0.7200451 Find estimates and for the “best” line i.e., that minimizes Residuals
~ E R C I S SIMPLE LINEAR REGRESSION via the METHOD OF LEAST SQUARES X predictor X 1.1 1.8 2.1 3.7 4.0 7.3 9.1 11.9 12.4 17.1 Y 13.1 18.3 17.6 19.1 19.3 3.2 5.6 13.6 8.0 3.0 ~ E R C I S observed response fitted response residuals > cor(x, y) -0.7200451 Find estimates and for the “best” line i.e., that minimizes Residuals
Test Statistic for p-value? Testing for linear association between two numerical population variables X and Y… Now that we have these, we can conduct HYPOTHESIS TESTING on 0 and 1 Linear Regression Coefficients “Response = Model + Error” Test Statistic for p-value? Linear Regression Coefficients
~ E R C I S SIMPLE LINEAR REGRESSION via the METHOD OF LEAST SQUARES X predictor X 1.1 1.8 2.1 3.7 4.0 7.3 9.1 11.9 12.4 17.1 Y 13.1 18.3 17.6 19.1 19.3 3.2 5.6 13.6 8.0 3.0 ~ E R C I S observed response fitted response residuals > cor(x, y) -0.7200451 Find estimates and for the “best” line i.e., that minimizes Residuals
Test Statistic for p-value Testing for linear association between two numerical population variables X and Y… Now that we have these, we can conduct HYPOTHESIS TESTING on 0 and 1 Linear Regression Coefficients “Response = Model + Error” Test Statistic for p-value Linear Regression Coefficients Same t-score as H0: = 0! p-value = .0189
BUT WHY HAVE TWO METHODS FOR THE SAME PROBLEM??? > plot(x, y, pch = 19) > lsreg = lm(y ~ x) # or lsfit(x,y) > abline(lsreg) > summary(lsreg) Call: lm(formula = y ~ x) Residuals: Min 1Q Median 3Q Max -8.6607 -3.2154 0.8954 3.4649 5.7742 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 18.2639 2.6097 6.999 0.000113 *** x -0.8772 0.2989 -2.935 0.018857 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 4.869 on 8 degrees of freedom Multiple R-squared: 0.5185, Adjusted R-squared: 0.4583 F-statistic: 8.614 on 1 and 8 DF, p-value: 0.01886 BUT WHY HAVE TWO METHODS FOR THE SAME PROBLEM??? Because this second method generalizes…
ANOVA Table Source df SS MS F-ratio p-value Treatment Error Total –
ANOVA Table Source df SS MS F-ratio p-value Regression Error Total – ?
? ANOVA Table 1 Source df SS MS F-ratio p-value Regression Error Total – ?
Test Statistic for p-value Testing for linear association between two numerical population variables X and Y… Now that we have these, we can conduct HYPOTHESIS TESTING on 0 and 1 Linear Regression Coefficients “Response = Model + Error” Test Statistic for p-value Linear Regression Coefficients Same t-score as H0: = 0! p-value = .0189
? ? ? ? ANOVA Table 1 8 Source df SS MS F-ratio p-value Regression Error 8 Total – ? ? ? ?
x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Parameter Estimation via SAMPLE DATA … STATISTICS Means: Variances: JAMA. 2003;290:1486-1493 Scatterplot (n data points)
Parameter Estimation via SAMPLE DATA … x1 x2 x3 x4 … xn y1 y2 y3 y4 yn STATISTICS Means: Variances: JAMA. 2003;290:1486-1493 Scatterplot (n data points) SSTot is a measure of the total amount of variability in the observed responses (i.e., before any model-fitting).
Parameter Estimation via SAMPLE DATA … x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Means: Variances: STATISTICS JAMA. 2003;290:1486-1493 Scatterplot (n data points) SSReg is a measure of the total amount of variability in the fitted responses (i.e., after model-fitting.)
Parameter Estimation via SAMPLE DATA … x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Means: Variances: STATISTICS JAMA. 2003;290:1486-1493 Scatterplot (n data points) SSErr is a measure of the total amount of variability in the resulting residuals (i.e., after model-fitting).
~ E R C I S SIMPLE LINEAR REGRESSION via the METHOD OF LEAST SQUARES X predictor X 1.1 1.8 2.1 3.7 4.0 7.3 9.1 11.9 12.4 17.1 Y 13.1 18.3 17.6 19.1 19.3 3.2 5.6 13.6 8.0 3.0 ~ E R C I S observed response fitted response residuals > cor(x, y) -0.7200451 = 204.2 = 189.656 = 9 (43.76178) Residuals = 393.856
SSTot = SSReg + SSErr ~ E R C I S SIMPLE LINEAR REGRESSION via the METHOD OF LEAST SQUARES predictor X 1.1 1.8 2.1 3.7 4.0 7.3 9.1 11.9 12.4 17.1 Y 13.1 18.3 17.6 19.1 19.3 3.2 5.6 13.6 8.0 3.0 ~ E R C I S observed response fitted response residuals > cor(x, y) -0.7200451 = 204.2 = 189.656 = 393.856 Residuals minimum SSTot = SSReg + SSErr Tot Err Reg
ANOVA Table Source df SS MS F-ratio p-value Regression 1 204.200 MSReg Fk – 1, n – k 0 < p < 1 Error 8 189.656 MSErr Total 9 393.856 –
ANOVA Table Source df SS MS F-ratio p-value Regression 1 204.200 8.61349 0.018857 Error 8 189.656 23.707 Total 9 393.856 – Same as before!
> summary(aov(lsreg)) Df Sum Sq Mean Sq F value Pr(>F) Source df SS MS F-ratio p-value Regression 1 204.200 8.61349 0.018857 Error 8 189.656 23.707 Total 9 393.856 – > summary(aov(lsreg)) Df Sum Sq Mean Sq F value Pr(>F) x 1 204.20 204.201 8.6135 0.01886 * Residuals 8 189.66 23.707
Source df SS MS F-ratio p-value Regression 1 204.200 8.61349 0.018857 Error 8 189.656 23.707 Total 9 393.856 – Coefficient of Determination The least squares regression line accounts for 51.85% of the total variability in the observed response, with 48.15% remaining. Moreover,
> cor(x, y) -0.7200451 Coefficient of Determination The least squares regression line accounts for 51.85% of the total variability in the observed response, with 48.15% remaining. Moreover,
> plot(x, y, pch = 19) > lsreg = lm(y ~ x) > abline(lsreg) > summary(lsreg) Call: lm(formula = y ~ x) Residuals: Min 1Q Median 3Q Max -8.6607 -3.2154 0.8954 3.4649 5.7742 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 18.2639 2.6097 6.999 0.000113 *** x -0.8772 0.2989 -2.935 0.018857 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 4.869 on 8 degrees of freedom Multiple R-squared: 0.5185, Adjusted R-squared: 0.4583 F-statistic: 8.614 on 1 and 8 DF, p-value: 0.01886 Coefficient of Determination The least squares regression line accounts for 51.85% of the total variability in the observed response, with 48.15% remaining.
Summary of Linear Correlation and Simple Linear Regression Means Variances Covariance Given: X Y x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Linear Correlation Coefficient JAMA. 2003;290:1486-1493 X Y –1 r +1 measures the strength of linear association Least Squares Regression Line minimizes SSErr = = SSTot – SSReg (ANOVA) All point estimates can be upgraded to CIs for hypothesis testing, etc.
Summary of Linear Correlation and Simple Linear Regression 95% Confidence Intervals Means Variances Covariance (see notes for “95% prediction intervals”) Given: X Y x1 x2 x3 x4 … xn y1 y2 y3 y4 yn upper 95% confidence band Linear Correlation Coefficient JAMA. 2003;290:1486-1493 X Y –1 r +1 measures the strength of linear association Least Squares Regression Line lower 95% confidence band minimizes SSErr = = SSTot – SSReg (ANOVA) All point estimates can be upgraded to CIs for hypothesis testing, etc.
Summary of Linear Correlation and Simple Linear Regression Means Variances Covariance Given: X Y x1 x2 x3 x4 … xn y1 y2 y3 y4 yn Linear Correlation Coefficient JAMA. 2003;290:1486-1493 X Y –1 r +1 measures the strength of linear association Least Squares Regression Line minimizes SSErr = = SSTot – SSReg (ANOVA) All point estimates can be upgraded to CIs for hypothesis testing, etc. proportion of total variability modeled by the regression line’s variability. Coefficient of Determination
Analysis of Variance (ANOVA) Recall ~ Analysis of Variance (ANOVA) k 2 independent, equivariant, normally-distributed “treatment groups” MODEL ASSUMPTIONS? “Regression Diagnostics” 1 2 k = H0:
rotate line (?) 34 degrees
Each may be viewed either as: a point estimate of a prediction of an individual Yi. can extend to a confidence interval can extend to a prediction interval rotate line (?) 34 degrees
rotate line (?) 34 degrees
and Independent
Residual plot: Want to see a random scatterplot evenly distributed about 0, consistent with bell curves having constant variance.
“Polynomial Regression” Model = Errors are autocorrelated; may need to use specialized “time series” methods. “Variance stabilizing” formulas “Weighted” Least Squares (WLS) Model = “Polynomial Regression” (but still considered to be linear regression in the beta coefficients)