Evaluation of the mechanical behaviour and estimation of the elastic properties of porcine zonular fibres  Zoltán I. Bocskai, Gábor L. Sándor, Zoltán.

Slides:



Advertisements
Similar presentations
Chapter 19 Chapter 19 The Mechanical Behavior of Bone Copyright © 2013 Elsevier Inc. All rights reserved.
Advertisements

APPLIED MECHANICS Lecture 10 Slovak University of Technology
A program for creating patient-specific Finite Element models of fractured bones fixed with metallic implants Aviv Hurvitz, CAS Laboratory, The Hebrew.
Corrigendum to “Simulation of peri-implant bone healing due to immediate loading in dental implant treatments” [J. Biomech. 46/5 (2013) 871–878] Hsuan-Yu.
Date of download: 6/20/2016 Copyright © ASME. All rights reserved.
Date of download: 6/27/2016 Copyright © ASME. All rights reserved. From: Optical Microscopy-Aided Indentation Tests J. Eng. Mater. Technol. 2008;130(1):
Date of download: 9/30/2017 Copyright © ASME. All rights reserved.
Mechanics of Solids (M2H321546)
Stress and Strain – Axial Loading
G.K. German, E. Pashkovski, E.R. Dufresne  Journal of Biomechanics 
Statistical shape modeling describes variation in tibia and femur surface geometry between Control and Incidence groups from the Osteoarthritis Initiative.
Journal of Biomechanics
Kinematic and kinetic changes in obese gait in bariatric surgery-induced weight loss  Paavo Vartiainen, Timo Bragge, Tarja Lyytinen, Marko Hakkarainen,
Study of an infant brain subjected to periodic motion via a custom experimental apparatus design and finite element modelling  J. Cheng, I.C. Howard,
Modeling leaflet correction techniques in aortic valve repair: A finite element study  Michel R. Labrosse, Munir Boodhwani, Benjamin Sohmer, Carsten J.
The ideal subject distance for passport pictures
A short plate compression screw with diagonal bolts—A biomechanical evaluation performed experimentally and by numerical computation  Eran Peleg, Rami.
Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment  Wei Sun, Kewei Li, Eric Sirois  Journal.
1D OF FINITE ELEMENT METHOD Session 4 – 6
NSM LAB Net Shape Manufacturing Laboratory
Poisson’s Ratio For a slender bar subjected to axial loading:
Stress and Strain – Axial Loading
WORKSHOP 10 ANNULAR PLATE
Date of download: 10/31/2017 Copyright © ASME. All rights reserved.
A mathematical model to simulate the cardiotocogram during labor
Pieter-Paul A. Vergroesen, Albert J. van der Veen, Kaj S
Biomechanics of simulated versus natural cross-country sit skiing
Comparison of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous.
Date of download: 12/15/2017 Copyright © ASME. All rights reserved.
Mechanics of Biomaterials
Thin Walled Pressure Vessels
Corrigendum to “Failure of mineralized collagen fibrils: Modeling the role of collagen cross-linking” (J. Biomech. 41 (2008) 1427–1435)  Thomas Siegmund,
Poisson’s Ratio For a slender bar subjected to axial loading:
326MAE (Stress and Dynamic Analysis) 340MAE (Extended Stress and Dynamic Analysis)
The influence of early-phase remodeling events on the biomechanical properties of engineered vascular tissues  Zehra Tosun, Carolina Villegas-Montoya,
Alejandra M. Ruiz-Zapata, Andrew J
Tutorial in Mechanical Properties
Mechanical Properties of Actin Stress Fibers in Living Cells
An MRI derived articular cartilage visualization framework
Guillaume T. Charras, Mike A. Horton  Biophysical Journal 
F = 10,000 lb A = 2 in2 E = 30 x 106 psi L = 10 ft θ = 45°
Shijie He, Chenglin Liu, Xiaojun Li, Shaopeng Ma, Bo Huo, Baohua Ji 
Philipp J. Albert, Ulrich S. Schwarz  Biophysical Journal 
Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads  T. Christian Gasser, PhD, Göray.
Biomechanical Properties of the Thoracic Aneurysmal Wall: Differences Between Bicuspid Aortic Valve and Tricuspid Aortic Valve Patients  Caroline Forsell,
Volume 107, Issue 7, Pages (October 2014)
Volume 103, Issue 6, Pages (September 2012)
Volume 113, Issue 9, Pages (November 2017)
R. Mahmoodian, J. Leasure, P. Philip, N. Pleshko, F. Capaldi, S
Mechanical Forces of Fission Yeast Growth
Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and.
Worms under Pressure: Bulk Mechanical Properties of C
Bruce H. Smaill, PhDa, David C. McGiffin, MB, BS, FRACSb, Ian J
Mechanical properties of myxomatous mitral valves
Confessions of a journal junkie
Poisson’s Ratio For a slender bar subjected to axial loading:
Bart Smeets, Maxim Cuvelier, Jiri Pešek, Herman Ramon 
Volume 113, Issue 9, Pages (November 2017)
Johnson Hua, BS, William R. Mower, MD, PhD  Journal of Vascular Surgery 
Internal Jugular Vein Aneurysm: A Case Report
The Elastic Properties of the Cryptococcus neoformans Capsule
Quantitative Analysis of the Viscoelastic Properties of Thin Regions of Fibroblasts Using Atomic Force Microscopy  R.E. Mahaffy, S. Park, E. Gerde, J.
Rheology Current Biology
Ruptured Infected Aneurysm of the Aorta Secondary to Appendicitis
R. Gueta, D. Barlam, R.Z. Shneck, I. Rousso  Biophysical Journal 
Deformation Characteristics of Venous Stents: A Comparative Assessment
Basal bodies Current Biology
Tutorial.
Individuals with patellofemoral pain exhibit greater patellofemoral joint stress: a finite element analysis study  S. Farrokhi, J.H. Keyak, C.M. Powers 
Fig. 7. Nanowarming maintains biomechanical properties of porcine carotid arteries. Nanowarming maintains biomechanical properties of porcine carotid arteries.
Presentation transcript:

Evaluation of the mechanical behaviour and estimation of the elastic properties of porcine zonular fibres  Zoltán I. Bocskai, Gábor L. Sándor, Zoltán Kiss, Imre Bojtár, Zoltán Z. Nagy  Journal of Biomechanics  Volume 47, Issue 13, Pages 3264-3271 (October 2014) DOI: 10.1016/j.jbiomech.2014.08.013 Copyright © 2014 Elsevier Ltd Terms and Conditions

Fig. 1 Sketch of the measurement, and the section of the separating ring, the supporting ring and the dissecting ring. Journal of Biomechanics 2014 47, 3264-3271DOI: (10.1016/j.jbiomech.2014.08.013) Copyright © 2014 Elsevier Ltd Terms and Conditions

Fig. 2 Images of an experimental sample; upper view A, B, H, I, L; view from below D, E, F, J, K; side view C, G; specimen after a typical failure mode M; section view N; 1 – dissecting ring; 2 – supporting ring; 3 – separating ring. Journal of Biomechanics 2014 47, 3264-3271DOI: (10.1016/j.jbiomech.2014.08.013) Copyright © 2014 Elsevier Ltd Terms and Conditions

Fig. 3 The difference between the measured (F׳–d׳) and calculated (F–d) force–displacement diagrams (A); the notations on an infinitesimal element, “ss” means single supported edge, t is the thickness, l is the length of the fibres, Dr is the distance between the inner (Ri) and outer (Ro) radius, Nr is the normal force in the bundles (B); the mesh grid (C) and the total deformation of the computational finite element model (D). Journal of Biomechanics 2014 47, 3264-3271DOI: (10.1016/j.jbiomech.2014.08.013) Copyright © 2014 Elsevier Ltd Terms and Conditions

Fig. 4 The analytical solution compared with the FE calculations; E is the Young׳s modulus, ν is the Poisson׳s ratio. Journal of Biomechanics 2014 47, 3264-3271DOI: (10.1016/j.jbiomech.2014.08.013) Copyright © 2014 Elsevier Ltd Terms and Conditions

Fig. 5 The measured force–displacement diagrams of the laboratory tests (A); the initial interval of the measured force–displacement diagrams (B). Journal of Biomechanics 2014 47, 3264-3271DOI: (10.1016/j.jbiomech.2014.08.013) Copyright © 2014 Elsevier Ltd Terms and Conditions

Fig. 6 The 4th order polynomial regressions (A) and the mean value with the standard deviations at characteristic displacements (B). Journal of Biomechanics 2014 47, 3264-3271DOI: (10.1016/j.jbiomech.2014.08.013) Copyright © 2014 Elsevier Ltd Terms and Conditions

Fig. 7 The analytical solutions compared with the mean±SD values of the laboratory tests; E is the Young׳s modulus. Journal of Biomechanics 2014 47, 3264-3271DOI: (10.1016/j.jbiomech.2014.08.013) Copyright © 2014 Elsevier Ltd Terms and Conditions

Fig. 8 The results of the FE analysis compared with the mean±SD values of the laboratory tests; E is the Young׳s modulus, ν is the Poisson׳s ratio. Journal of Biomechanics 2014 47, 3264-3271DOI: (10.1016/j.jbiomech.2014.08.013) Copyright © 2014 Elsevier Ltd Terms and Conditions

Fig. 9 The effects of the initial stresses and Poisson׳s ratios compared with the mean±SD values of the laboratory tests; E is the Young׳s modulus, ν is the Poisson׳s ratio, IS1=4.4kPa and IS2=8.4kPa are the two different initial stress values. Journal of Biomechanics 2014 47, 3264-3271DOI: (10.1016/j.jbiomech.2014.08.013) Copyright © 2014 Elsevier Ltd Terms and Conditions