2002. 3. 23 2002년도 한국지진공학회 춘계학술발표회 Hybrid Control Strategy for Seismic Protection of Benchmark Cable-Stayed Bridges 박규식, 한국과학기술원 토목공학과 박사과정 정형조, 한국과학기술원.

Slides:



Advertisements
Similar presentations
Model-based Real-Time Hybrid Simulation for Large-Scale Experimental Evaluation Brian M. Phillips University of Illinois B. F. Spencer, Jr. University.
Advertisements

,, Seismic Protection of Benchmark Cable-Stayed Bridge using Hybrid Control Strategy.
2002 Control of a Seismically Excited Cable-Stayed Bridge Employing a Hybrid Control Strategy ,
Finite element seismic analysis of a guyed mast
Optimal placement of MR dampers
An-Najah National University
MR 유체 감쇠기를 이용한 사장교의 지진응답 제어 기법
Application of Fluid-Structure Interaction Algorithms to Seismic Analysis of Liquid Storage Tanks Zuhal OZDEMIR, Mhamed SOULI Université des Sciences et.
사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안
Konstantinos Agrafiotis
Chapter 17 Design Analysis using Inventor Stress Analysis Module
Colorado State University
Reinforced Concrete Design II
Comparative Study on Performances of Various Semiactive Control Algorithms for Stay Cables 2004 년도 강구조공학회 학술발표대회 2004 년 6 월 5 일 장지은, 한국과학기술원 건설 및 환경공학과.
University of Palestine
CABLE-STAYED BRIDGE SEISMIC ANALYSIS USING ARTIFICIAL ACCELEROGRAMS
Structural Dynamics & Vibration Control Lab 1 December Department of Civil & Environmental Engineering K orea A dvanced I nstitute of S cience.
Static Pushover Analysis
정형조, 세종대학교 토목환경공학과 조교수 최강민, 한국과학기술원 건설 및 환경공학과 박사과정 지한록, 한국과학기술원 건설 및 환경공학과 석사과정 고만기, 공주대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수 2005 년 한국강구조학회 학술발표회.
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 박선규 : 교수, 성균관대학교 토목공학과 박선규 : 교수, 성균관대학교 토목공학과.
Sang-Won Cho* : Ph.D. Student, KAIST Sang-Won Cho* : Ph.D. Student, KAIST Dong-Hyawn Kim: Senior Researcher, KORDI Dong-Hyawn Kim: Senior Researcher, KORDI.
1 지진하중을 받는 구조물의 MR 댐퍼의 동특성을 고려한 반능동 신경망제어 Heon-Jae Lee 1), Hyung-Jo Jung 2), Ju-Won Oh 3), In-Won Lee 4) 1) Graduate Student, Dept. of Civil and Environmental.
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo,
* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.
Hyung-Jo Jung Sejong University, Korea Hyung-Jo Jung Sejong University, Korea Kang-Min Choi Korea Advanced Inst. of Science and Tech. Kang-Min Choi Korea.
케이블 진동 감쇠를 위한 반능동 제어 장치 성능의 실험적 평가
Presented by: Sasithorn THAMMARAK (st109957)
Robust Hybrid Control of a Seismically Excited Cable-Stayed Bridge JSSI 10th Anniversary Symposium on Performance of Response Controlled Buildings Kyu-Sik.
Structural Dynamics & Vibration Control Lab., KAIST 1 Structural Vibration Control Using Semiactive Tuned Mass Damper Han-Rok Ji, Graduate Student, KAIST,
Structural Dynamics & Vibration Control Lab 1 Smart Passive System based on MR Damper for Benchmark Structural Control Problem for a Seismically Excited.
대한토목학회 2001 년도 학술발표대회 풍하중을 받는 구조물의 3 차원 유한요소해석 Three-dimensional Finite Element Analyses of Structures under Wind Loads 김병완 1), 김운학 2), 이인원 3) 1) 한국과학기술원.
지진 하중을 받는 구조물의 능동 모달 퍼지 제어시스템
CONTENTS Introduction Semi-Active Control Proposed Control Algorithm
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 이종헌 : 교수, 경일대학교 토목공학과 이종헌 : 교수, 경일대학교 토목공학과.
Structural Dynamics & Vibration Control Lab., KAIST, Korea 1 A Comparative Study on Aseismic Performances of Base Isolation Systems for Multi-span Continuous.
1 Structural Dynamics & Vibration Control Lab., KAIST 사장교의 면진 성능 향상을 위한 납고무 받침의 설계 기준 제안 Guidelines of Designing L.R.B. for a Cable-Stayed Bridge to Reduce.
Hybrid System Controlled by a  -Synthesis Method for a Seismically Excited Cable-Stayed Bridge 2004 추계 학술대회 소음진동분야 NRL 2 지진하중을 받는 사장교를 위한  - 합성법을 이용한.
MR 댐퍼를 기반으로 하는 스마트 수동제어 시스템 대한토목학회 정기 학술대회 2004 년 10 월 21 일 조상원 : KAIST 건설환경공학과, 박사 이헌재 : KAIST 건설환경공학과, 박사과정 오주원 : 한남대학교 토목환경공학과, 교수 이인원 : KAIST 건설환경공학과,
* 김동현 : KAIST 토목공학과, 박사후연구원 오주원 : 한남대학교 토목환경공학과, 교수 오주원 : 한남대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이인원 : KAIST 토목공학과, 교수 이인원 :
Probabilistic seismic hazard assessment for the pseudo-negative stiffness control of a steel base-isolated building: A comparative study with bilinear.
CABER Project Update February 22, 2008
The Asian-Pacific Symposium on Structural Reliability and its Applications Seoul, Korea, August 18-20, 2004 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate,
Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원.
모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수.
Robust Analysis of a Hybrid System Controlled by a  -Synthesis Method Kyu-Sik Park, Post Doctoral Researcher, UIUC, USA Hyung-Jo Jung, Assistant Professor,
Kyu-Sik Park Kyu-Sik Park, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Research Assistant Professor, KAIST, Korea In-Won Lee In-Won Lee,
1 지진시 구조물의 지능제어 기법 Intelligent Control of Structures under Earthquakes 김동현 : 한국과학기술원 토목공학과, 박사과정 이규원 : 전북대학교 토목공학과, 교수 이종헌 : 경일대학교 토목공학과, 교수 이인원 : 한국과학기술원.
 - 합성법을 이용한 사장교의 지진응답 제어 년도 한국전산구조공학회 가을 학술발표회 박규식, 한국과학기술원 건설 및 환경공학과 박사후과정 정형조, 세종대학교 토목환경공학과 조교수 윤우현, 경원대학교 산업환경대학원 부교수 이인원, 한국과학기술원.
Kang-Min Choi, Kang-Min Choi, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Professor, Sejong National University, Korea In-Won Lee In-Won.
ISEC-02 Second International Structural Engineering and Costruction Conference September 22-26,2003, Rome “EVALUATION AND RESULTS’ COMPARISON IN DYNAMIC.
Sang-Won Cho* : Ph.D. Candidate, KAIST Sang-Won Cho* : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Hyung-Jo.
HYBRID SYSTEM CONTROLLED BY A  -SYNTHESIS METHOD International Symposium on Earthquake Engineering Commemorating 10 th Anniversary of the 1995 Kobe Earthquake.
Review of Indian Seismic Codes
Seismic analysis of Bridges Part II
Th 11 International Conference on Earthquake Resistant Engineering Structures Protection of Masonry Housing in High Seismic Zones with Low-Cost Rubber.
Eduardo Ismael Hernández UPAEP University, MEXICO
VIBRATION CONTROL OF STRUCTURE USING CMAC
Modal Control for Seismically Excited Structures using MR Damper
Assessment of Base-isolated CAP1400 Nuclear Island Design
CHAPTER 1 Force Analysis. Deformation Analysis.
An-Najah National University
KAIST-Kyoto Univ. Joint Seminar
반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 이헌재, 한국과학기술원 건설환경공학과 석사과정
Implementation of Modal Control for
Robust Hybrid Control System
Robust Hybrid Control System
A Survey on State Feedback AMD Control
Modified Sturm Sequence Property for Damped Systems
a Bang-Bang Type Controller
Control of a Hybrid System using a -Synthesis Method
Presentation transcript:

2002. 3. 23 2002년도 한국지진공학회 춘계학술발표회 Hybrid Control Strategy for Seismic Protection of Benchmark Cable-Stayed Bridges 박규식, 한국과학기술원 토목공학과 박사과정 정형조, 한국과학기술원 토목공학과 연구조교수 이종헌, 경일대학교 토목공학과 교수 이인원, 한국과학기술원 토목공학과 교수

CONTENTS Introduction Benchmark problem statement Seismic control system using hybrid control strategy Numerical simulations Conclusions

INTRODUCTION Many control strategies and devices have been developed and investigated to protect structures against natural hazard. The control of very flexible and large structures such as cable-stayed bridges is a unique and challenging problem. The 1st generation benchmark control problem for cable-stayed bridges under seismic loads has been developed (Dyke et al., 2000).

Objective of this study: investigate the effectiveness of hybrid control strategy for seismic protection of cable-stayed bridges under seismic loads hybrid control strategy: combination of passive and active control strategies

BENCHMARK PROBLEM STATEMENT Benchmark bridge model Under construction in Cape Girardeau, Missouri, USA Sixteen STU* devices are employed in the connection between the tower and the deck in the original design. STU STU: Shock Transmission Unit

BENCHMARK PROBLEM STATEMENT Benchmark bridge model Under construction in Cape Girardeau, Missouri, USA Sixteen STU* devices are employed in the connection between the tower and the deck in the original design. 128 cables Two H- shape towers 12 additional piers STU: Shock Transmission Unit

Linear evaluation model - The Illinois approach has a negligible effect on the dynamics of the cable-stayed portion. - The stiffness matrix is determined through a nonlinear static analysis corresponding to deformed state of the bridge with dead loads. - A one dimensional excitation is applied in the longitudinal direction. - A set of eighteen criteria have been developed to evaluate the capabilities of each control strategy. Control design problem - Researcher/designer must define the sensor, devices, algorithms to be used in the proposed control strategy.

Historical earthquake excitations PGA: 0.3483g PGA: 0.1434g PGA: 0.2648g

Evaluation criteria - Peak responses J1: Base shear J2: Shear at deck level J3: Overturning moment J4: Moment at deck level J5: Cable tension J6: Deck dis. at abutment - Control Strategy (J12 – J18) J12: Peak force J13: Device stroke J14: Peak power J15: Total power J16: Number of control devices J17: Number of sensor J18: - Normed responses J7: Base shear J8: Shear at deck level J9: Overturning moment J10: Moment at deck level J11: Cable tension

SEISMIC CONTROL SYSTEM USING HYBRID CONTROL STRATEGY Passive control devices - In this hybrid control strategy, passive control strategy has a great role for the effectiveness of control performance. - Lead Rubber Bearings (LRBs) are used as passive control devices.

- The design of LRBs follows a general and recommended procedure (Ali and Abdel-Ghaffar, 1995). : The combined plastic or/and elastic stiffness of the bearings at the pier or/and bent are assumed to be 1.15M/m. (M: the part of deck weight carried by bearings) : The elastic stiffness of LRB is assumed to be 10 times the plastic stiffness. : The design shear force level for the yielding of lead plug is taken to be 0.15M. - The equivalent linear model for LRB is used.

Active control devices - A total of 24 hydraulic actuator, which are used in the benchmark problem, are employed. - The actuators have a capacity of 1000 kN. - Actuator dynamics are neglected and the actuator is considered to be ideal. - five accelerometers and four displacement sensors are used for feedback. - An H2/LQG control algorithm is adopted.

24 LRBs, 24 hydraulic actuators Control devices and sensor locations H2/LQG Control force 2 1 5 accelerometers 2 4 displacement sensors 8 4 24 LRBs, 24 hydraulic actuators

Control design model (Reduced-order model) - formed from the evaluation model and has 30 states - by forming a balanced realization and condensing out the states with relatively small controllability and observability grammians - the resulting state space system is : State space eq. : Regulated output eq. : Measured output eq.

Weighting parameters for active control part - performance index Q: Response weighing matrix R: Control force weighting matrix (identity matrix)

- the maximum response approach is used. Step 1. Calculate maximum responses for the candidate weighting parameters as increasing each parameters. Step 2. Normalized maximum responses by the results of based structure and plot sum of max. responses. Step 3. Select two parameters which give the smallest sum of max. responses.

- the maximum response approach is used. Step 4. Calculate maximum responses for the selected two weighting parameters as increasing each parameters simultaneously. Step 5. Determine the values of the appropriate optimal weighting parameters. Step 1. Calculate maximum responses for the candidate weighting parameters as increasing each parameters. Step 2. Normalized maximum responses by the results of based structure and plot sum of max. respomses. Step 3. Select two parameters which give the smallest sum of max. responses.

- the selected values of appropriate optimal weighting parameters : for active control strategy min. point bm: base moment dd: deck dis.

: for hybrid control strategy unstable controller min.point bs: base shear td: top tower dis.

NUMERICAL SIMULATIONS Simulation results - time history response deck displacement base moment (overturning moment) - evaluation criteria

Time history responses under three historical earthquakes

Displacement (cm) Base moment (105 kN·m)

Evaluation criteria under El Centro earthquake

Evaluation criteria Passive Active Hybrid 0.314 0.271 0.321 0.894 J1. Max. base shear 0.314 0.271 0.321 J2. Max. deck shear 0.894 0.790 0.653 J3. Max. base moment 0.299 0.254 0.309 J4. Max. deck moment 0.443 0.460 0.302 J5. Max. cable deviation 0.170 0.147 0.144 J6. Max. deck dis. 1.184 1.006 0.793 J7. Norm base shear 0.246 0.200 0.237 J8. Norm deck shear 0.728 0.716 0.541 J9. Norm base moment 0.281 0.201 0.244 J10. Norm deck moment 0.391 0.512 0.265 J11. Norm cable deviation 1.31e-2 1.62e-2 1.56e-2 J12. Max. control force 7.82e-3 1.96e-3 4.53e-3 J13. Max. device stroke 0.778 0.660 0.521 J14. Max. power - 4.57e-3 3.76e-3 J15. Total power 7.25e-4 5.96e-4 4.53e-3 LRB: 5.24e-3 HA: 1.96e-3

Evaluation criteria under Mexico City earthquake

Evaluation criteria Passive Active Hybrid 0.578 0.507 0.546 1.025 J1. Max. base shear 0.578 0.507 0.546 J2. Max. deck shear 1.025 0.910 0.773 J3. Max. base moment 0.768 0.448 0.500 J4. Max. deck moment 0.364 0.415 0.259 J5. Max. cable deviation 4.70e-2 4.50e-2 4.20e-2 J6. Max. deck dis. 2.194 1.666 1.342 J7. Norm base shear 0.503 0.376 0.419 J8. Norm deck shear 0.820 0.770 0.632 J9. Norm base moment 0.579 0.356 0.412 J10. Norm deck moment 0.567 0.691 0.370 J11. Norm cable deviation 5.05e-3 6.27e-3 4.84e-3 J12. Max. control force 3.48e-3 1.22e-3 1.96e-3 J13. Max. device stroke 1.105 0.839 0.676 J14. Max. power - 2.62e-3 1.30e-3 J15. Total power 3.49e-4 1.73e-4 1.96e-3 LRB: 2.33e-3 HA: 9.89e-4

Evaluation criteria under Gebze earthquake

Evaluation criteria Passive Active Hybrid 0.425 0.414 0.408 0.963 J1. Max. base shear 0.425 0.414 0.408 J2. Max. deck shear 0.963 1.158 0.665 J3. Max. base moment 0.364 0.342 0.387 J4. Max. deck moment 0.526 0.879 0.420 J5. Max. cable deviation 0.101 9.01e-2 8.15e-2 J6. Max. deck dis. 1.207 1.803 0.880 J7. Norm base shear 0.312 0.295 0.299 J8. Norm deck shear 0.876 0.951 0.669 J9. Norm base moment 0.343 0.351 0.311 J10. Norm deck moment 0.489 0.762 J11. Norm cable deviation 6.46e-3 8.90e-3 6.48e-3 J12. Max. control force 5.97e-3 1.96e-3 2.98e-3 J13. Max. device stroke 1.73e-4 0.989 0.482 J14. Max. power - 9.33e-3 5.38e-3 J15. Total power 8.80e-4 5.07e-4 2.98e-3 LRB: 3.99e-3 HA: 1.96e-3

Maximum evaluation criteria

Evaluation criteria Passive Active Hybrid 0.578 0.507 0.546 1.025 J1. Max. base shear 0.578 0.507 0.546 J2. Max. deck shear 1.025 1.158 0.773 J3. Max. base moment 0.768 0.448 0.500 J4. Max. deck moment 0.526 0.879 0.420 J5. Max. cable deviation 0.170 0.147 0.144 J6. Max. deck dis. 2.194 1.803 1.342 J7. Norm base shear 0.503 0.376 0.419 J8. Norm deck shear 0.876 0.951 0.669 J9. Norm base moment 0.579 0.356 0.412 J10. Norm deck moment 0.567 0.762 0.370 J11. Norm cable deviation 1.31e-2 1.62e-3 1.56e-2 J12. Max. control force 7.82e-3 1.96e-3 4.53e-3 J13. Max. device stroke 1.105 0.989 0.676 J14. Max. power - 9.33e-3 5.38e-3 J15. Total power 8.80e-4 5.96e-3 4.53e-3 LRB: 5.24e-3 HA: 1.96e-3

Actuator requirements Earthquake Max. Active Hybrid 1940 El Centro NS Force(kN) 1000 Stroke(m) 0.0982 0.0774 Vel. (m/s) 0.5499 0.5208 1985 Mexico City 622.23 504.60 0.0405 0.0326 0.2374 0.1665 1990 Gebze NS 0.1297 0.0633 0.4157 0.3142 Actuator requirement constraints Force: 1000 kN, Stroke: 0.2 m, Vel.: 1m/sec

CONCLUSIONS A hybrid control control strategy combining passive and active control systems has been proposed for the benchmark bridge problem. The performance of the proposed hybrid control design is quite effective compared to that of the passive control design and slightly better than that of active control design. The proposed hybrid control design is more reliable that the active control method due to the passive control part.

Thank you for your attention.