Objectives Factor the sum and difference of two cubes.

Slides:



Advertisements
Similar presentations
Factoring Polynomials
Advertisements

Factoring Polynomials.
Warm up Use synthetic division to divide (4x3 – 3x2 + 2x + 1)/ (x – 1) (x3 – x2 – 6)/(x + 2)
Solving a cubic function by factoring: using the sum or difference of two cubes. By Diane Webb.
6 – 4: Factoring and Solving Polynomial Equations (Day 1)
Factoring Polynomials
Intermediate Algebra A review of concepts and computational skills Chapters 4-5.
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
Factoring Polynomials
Warm Up Factor each expression. 1. 3x – 6y 2. a 2 – b 2 3. (x – 1)(x + 3) 4. (a + 1)(a 2 + 1) x 2 + 2x – 3 3(x – 2y) (a + b)(a – b) a 3 + a 2 + a + 1 Find.
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
Warm Up #10 Multiply the polynomial. 1. (x + 2)(x + 3)(x + 1)
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
Perfect Square Trinomials and Difference of Perfect Squares
Chapter factoring polynomials. Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two.
Factoring Polynomials
Objective: 6.4 Factoring and Solving Polynomial Equations 1 5 Minute Check  Simplify the expression
Factoring a Binomial There are two possibilities when you are given a binomial. It is a difference of squares There is a monomial to factor out.
Multiplying Polynomials *You must know how to multiply before you can factor!”
5.4 Factor and Solve Polynomial Equations. Find a Common Monomial Factor Monomial: means one term. (ex) x (ex) x 2 (ex) 4x 3 Factor the Polynomial completely.
SECTION 3-4 FACTORING POLYNOMIALS Objectives - Use the Factor Theorem to determine factors of a polynomial - Factor the sum and difference of two cubes.
5-4 Factoring Quadratic Expressions M11.A.1.2.1: Find the Greatest Common Factor and/or the Least Common Multiple for sets of monomials M11.D.2.1.5: Solve.
WARM UP SOLVE USING THE QUADRATIC EQUATION, WHAT IS THE EXACT ANSWER. DON’T ROUND.
Warm - up Factor: 1. 4x 2 – 24x4x(x – 6) 2. 2x x – 21 (2x – 3)(x + 7) 3. 4x 2 – 36x + 81 (2x – 9) 2 Solve: 4. x x + 25 = 0x = x 2 +
EXAMPLE 1 Find a common monomial factor Factor the polynomial completely. a. x 3 + 2x 2 – 15x Factor common monomial. = x(x + 5)(x – 3 ) Factor trinomial.
Objectives Factor the sum and difference of two cubes.
Factor and Solve Polynomial Equations Homework Questions?
Solving Polynomials. Factoring Options 1.GCF Factoring (take-out a common term) 2.Sum or Difference of Cubes 3.Factor by Grouping 4.U Substitution 5.Polynomial.
ALGEBRA 1 Lesson 8-7 Warm-Up ALGEBRA 1 “Factoring Special Cases” (8-7) What is a “perfect square trinomial”? How do you factor a “perfect square trinomial”?
5.3C- Special Patterns for Multiplying Binomials SUM AND DIFFERENCE (a+b)(a-b) = a² - b² (x +2)(x – 2) = x² -4 “O & I” cancel out of FOIL SQUARE OF A BINOMIAL.
Factoring Polynomials
Polynomials and Polynomial Functions
Factoring Polynomials
Warm Up Factor each expression. 1. 3x – 6y 2. a2 – b2
Factoring Polynomials
Copyright © 2013, 2009, 2006 Pearson Education, Inc.
4.5 & 4.6 Factoring Polynomials & Solving by Factoring
Factoring By Grouping and Cubes.
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
Do Now Determine if the following are perfect squares. If yes, identify the positive square root /16.
Warm - up x2 – 24x 4x(x – 6) 2. 2x2 + 11x – 21 (2x – 3)(x + 7)
Factoring Polynomials
8.6 Choosing a Factoring Method
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
Finding polynomial roots
Do Now Graph the following using a calculator: A) B)
Factoring Polynomials
Warm Up Factor each expression. 1. 3x – 6y 3(x – 2y) 2. a2 – b2
Factoring Polynomials 3
Chapter 6 Section 4.
Factoring.
Factoring Polynomials
Essential Questions How do we use the Factor Theorem to determine factors of a polynomial? How do we factor the sum and difference of two cubes.
Factoring Special Cases
LEARNING GOALS – LESSON 6.4
Factoring Special Cases
Factoring Polynomials
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
Polynomials and Polynomial Functions
Factoring Polynomials
Objectives Use the Factor Theorem to determine factors of a polynomial. Factor the sum and difference of two cubes.
You can use synthetic division to evaluate polynomials
(B12) Multiplying Polynomials
Factoring Polynomials
Warm Up 1. Divide by using synthetic division. (8x3 + 6x2 + 7) ÷ (x + 2) 8x2 – 10x + 20 – 33 x Divide by using synthetic division. (x3 –
 .
Recall that if a number is divided by any of its factors, the remainder is 0. Likewise, if a polynomial is divided by any of its factors, the remainder.
Factoring Polynomials
 .
Same Sign Opposite Sign Always Positive
Presentation transcript:

Objectives Factor the sum and difference of two cubes. Factor by grouping.

Example 1: Factoring by Grouping Factor: x3 – x2 – 25x + 25. (x3 – x2) + (–25x + 25) Group terms. Factor common monomials from each group. x2(x – 1) – 25(x – 1) Factor out the common binomial (x – 1). (x – 1)(x2 – 25) Factor the difference of squares. (x – 1)(x – 5)(x + 5)

Check It Out! Example 2 Factor: x3 – 2x2 – 9x + 18. (x3 – 2x2) + (–9x + 18) Group terms. Factor common monomials from each group. x2(x – 2) – 9(x – 2) Factor out the common binomial (x – 2). (x – 2)(x2 – 9) Factor the difference of squares. (x – 2)(x – 3)(x + 3)

Check It Out! Example 3 Factor: 2x3 + x2 + 8x + 4. (2x3 + x2) + (8x + 4) Group terms. Factor common monomials from each group. x2(2x + 1) + 4(2x + 1) Factor out the common binomial (2x + 1). (2x + 1)(x2 + 4) (2x + 1)(x2 + 4)

Just as there is a special rule for factoring the difference of two squares, there are special rules for factoring the sum or difference of two cubes.

Example 4: Factoring the Sum or Difference of Two Cubes Factor the expression. 4x4 + 108x 4x(x3 + 27) Factor out the GCF, 4x. 4x(x3 + 33) Rewrite as the sum of cubes. Use the rule a3 + b3 = (a + b)  (a2 – ab + b2). 4x(x + 3)(x2 – x  3 + 32) 4x(x + 3)(x2 – 3x + 9)

Example 5: Factoring the Sum or Difference of Two Cubes Factor the expression. 125d3 – 8 Rewrite as the difference of cubes. (5d)3 – 23 (5d – 2)[(5d)2 + 5d  2 + 22] Use the rule a3 – b3 = (a – b)  (a2 + ab + b2). (5d – 2)(25d2 + 10d + 4)

Check It Out! Example 6 Factor the expression. 8 + z6 Rewrite as the difference of cubes. (2)3 + (z2)3 (2 + z2)[(2)2 – 2  z + (z2)2] Use the rule a3 + b3 = (a + b)  (a2 – ab + b2). (2 + z2)(4 – 2z + z4)

Check It Out! Example 7 Factor the expression. 2x5 – 16x2 2x2(x3 – 8) Factor out the GCF, 2x2. Rewrite as the difference of cubes. 2x2(x3 – 23) Use the rule a3 – b3 = (a – b)  (a2 + ab + b2). 2x2(x – 2)(x2 + x  2 + 22) 2x2(x – 2)(x2 + 2x + 4)

Example 4: Geometry Application The volume of a plastic storage box is modeled by the function V(x) = x3 + 6x2 + 3x – 10. Identify the values of x for which V(x) = 0, then use the graph to factor V(x). V(x) has three real zeros at x = –5, x = –2, and x = 1. If the model is accurate, the box will have no volume if x = –5, x = –2, or x = 1.

Example 4 Continued One corresponding factor is (x – 1). 1 1 6 3 –10 Use synthetic division to factor the polynomial. 1 7 10 1 7 10 V(x)= (x – 1)(x2 + 7x + 10) Write V(x) as a product. V(x)= (x – 1)(x + 2)(x + 5) Factor the quadratic.

P(1) ≠ 0, so x – 1 is not a factor of P(x). Lesson Quiz Is the binomial a factor of the polynomial? 1. x – 1; P(x) = 3x2 – 2x + 5 P(1) ≠ 0, so x – 1 is not a factor of P(x). 2. x + 2; P(x) = x3 + 2x2 – x – 2 P(2) = 0, so x + 2 is a factor of P(x). Factor: 3. x3 + 3x2 – 9x – 27 (x + 3)(x + 3)(x – 3) 4. x3 + 3x2 – 28x – 60 (x + 6)(x – 5)(x + 2) 5. 64p3 – 8q3 8(2p – q)(4p2 + 2pq + q2)