A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents  Leyuan Zhang, Changkun Zhang, Yu Ding, Katrina Ramirez-Meyers,

Slides:



Advertisements
Similar presentations
Polymer graphite composite anodes for Li-ion batteries Basker Veeraraghavan, Bala Haran, Ralph White and Branko Popov University of South Carolina, Columbia,
Advertisements

Date of download: 9/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Volume 2, Issue 2, Pages (February 2018)
Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries
A Reliability Look at Energy Development
Prussian Blue Analogs for Rechargeable Batteries
Volume 2, Issue 2, Pages (February 2017)
Quan Pang, Xiao Liang, Abhinandan Shyamsunder, Linda F. Nazar  Joule 
Volume 1, Issue 4, Pages (December 2017)
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
4.0 V Aqueous Li-Ion Batteries
Metal-Organic Frameworks for Energy Applications
Volume 1, Issue 2, Pages (October 2017)
Lithium Metal Extraction from Seawater
Zhizhang Yuan, Yinqi Duan, Tao Liu, Huamin Zhang, Xianfeng Li
Volume 3, Issue 6, Pages (December 2017)
Volume 2, Issue 2, Pages (February 2018)
Zhen Li, Bu Yuan Guan, Jintao Zhang, Xiong Wen (David) Lou  Joule 
Photoelectric Solar Power Revisited
Bitcoin's Growing Energy Problem
Mesoporous Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage  Wei Zhang, Lianhai Zu, Biao Kong, Bingjie Chen, Haili.
Volume 26, Issue 7, Pages (April 2016)
Volume 1, Issue 4, Pages (December 2017)
Veronica Augustyn, Yury Gogotsi  Joule 
Electrochemical Energy Storage with Mediator-Ion Solid Electrolytes
Wei Wen, Jin-Ming Wu, Yin-Zhu Jiang, Lu-Lu Lai, Jian Song  Chem 
Volume 2, Issue 1, Pages (January 2018)
Aliza Khurram, Mingfu He, Betar M. Gallant  Joule 
Sujong Chae, Minseong Ko, Kyungho Kim, Kihong Ahn, Jaephil Cho  Joule 
Volume 1, Issue 2, Pages (October 2017)
Volume 1, Issue 3, Pages (November 2017)
High-Energy Li Metal Battery with Lithiated Host
Alkaline Quinone Flow Battery with Long Lifetime at pH 12
Volume 3, Issue 6, Pages (December 2017)
Volume 2, Issue 3, Pages (March 2018)
Volume 4, Issue 2, Pages (February 2018)
Volume 2, Issue 1, Pages (January 2018)
Interphase Engineering Enabled All-Ceramic Lithium Battery
Volume 9, Pages (November 2018)
Volume 1, Issue 4, Pages (December 2017)
14.1% Efficient Monolithically Integrated Solar Flow Battery
Volume 4, Issue 2, Pages (February 2018)
Sujong Chae, Minseong Ko, Kyungho Kim, Kihong Ahn, Jaephil Cho  Joule 
Volume 1, Issue 2, Pages (August 2016)
Zhuangchai Lai, Ye Chen, Chaoliang Tan, Xiao Zhang, Hua Zhang  Chem 
Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes
Highly Fluorinated Interphases Enable High-Voltage Li-Metal Batteries
Volume 1, Issue 4, Pages (December 2017)
Chao Luo, Xiulin Fan, Zhaohui Ma, Tao Gao, Chunsheng Wang  Chem 
Metal-Organic Frameworks for Energy Applications
Volume 1, Issue 3, Pages (November 2017)
Volume 2, Issue 11, Pages (November 2018)
Yolk-Shell Architecture with Precision Expansion Void Control for Lithium Ion Batteries  Runwei Mo, David Rooney, Kening Sun  iScience 
Jiarui He, Yuanfu Chen, Arumugam Manthiram
Lightweight Metallic MgB2 Mediates Polysulfide Redox and Promises High-Energy- Density Lithium-Sulfur Batteries  Quan Pang, Chun Yuen Kwok, Dipan Kundu,
3D Porous Carbonaceous Electrodes for Electrocatalytic Applications
Volume 2, Issue 4, Pages (April 2018)
Volume 3, Issue 1, Pages (July 2017)
Xingwen Yu, Arumugam Manthiram
Zhuangchai Lai, Ye Chen, Chaoliang Tan, Xiao Zhang, Hua Zhang  Chem 
Realizing Formation and Decomposition of Li2O2 on Its Own Surface with a Highly Dispersed Catalyst for High Round-Trip Efficiency Li-O2 Batteries  Li-Na.
Volume 1, Issue 2, Pages (October 2017)
Volume 19, Pages (September 2019)
Volume 2, Issue 2, Pages (February 2017)
Fig. 2 Stabilizing the lithium-electrolyte interface.
Anode-Electrolyte Interfaces in Secondary Magnesium Batteries
Generating Light from Darkness
Fig. 5 Zn-air battery performance of pfSAC-Fe.
Room-Temperature Conversion of Methane Becomes True
Presentation transcript:

A Low-Cost and High-Energy Hybrid Iron-Aluminum Liquid Battery Achieved by Deep Eutectic Solvents  Leyuan Zhang, Changkun Zhang, Yu Ding, Katrina Ramirez-Meyers, Guihua Yu  Joule  DOI: 10.1016/j.joule.2017.08.013 Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 1 The Proof-of-Concept Fe-Al Hybrid Liquid Battery (A) Schematic of an Fe-Al battery based on DESs. (B) The photograph of a working Fe-Al battery (top) and its schematic of device configuration (bottom). Joule DOI: (10.1016/j.joule.2017.08.013) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 2 The Physical Properties and CVs of Various Fe DESs (A) Photograph of various Fe DESs. (B) Ionic conductivity of FeCl3·6H2O/urea/EG as a function of composition. (C) CV curves of Fe DESs at the sweeping rate of 1 mV s−1. (D) Viscosity data of FeCl3·6H2O/urea/EG as a function of temperature and composition. Joule DOI: (10.1016/j.joule.2017.08.013) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 3 The Electrochemical Performance of Fe(126) DES (A) CV curves of Fe(126) DES at different sweeping rates. (B) Linear relationships between the oxidation and reduction peak current with the square root of the sweeping rate. (C) The charge and discharge capacity with corresponding coulombic efficiency of Fe(126) catholyte when paired with Li at the current density of 0.1 mA cm−2. (D) Polarization curve (black) and corresponding specific power density (red) at room temperature. Joule DOI: (10.1016/j.joule.2017.08.013) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 4 The Electrochemical Performance of an Fe(126)-Al Battery (A) Charge/discharge profile of Fe(126)-DES/EC-DMC (1.7 M, 0.05 mL) paired with Al-DES/DCE (3.2 M, 0.1 mL) at current density of 0.1 mA cm−2. (B) The discharge voltage and corresponding power density of an Fe(126)-Al battery at various current densities. (C) Representative charge and discharge profiles over time at the current density of 0.1 mA cm−2. (D) The charge and discharge capacity with corresponding coulombic efficiency of an Fe(126)-Al battery at room temperature over cycling. Joule DOI: (10.1016/j.joule.2017.08.013) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 5 The Electrochemical Performance of an Fe(210)-Al Battery (A) The initial charge/discharge profile of Fe(210)-DES/EC-DMC (5 M, 0.03 mL) paired with Al-DES/DCE (3.2 M, 0.18 mL) at current density of 0.1 mA cm−2. (B) Polarization graph showing the discharging potential and power density at room temperature. Joule DOI: (10.1016/j.joule.2017.08.013) Copyright © 2017 Elsevier Inc. Terms and Conditions

Figure 6 Ex Situ Raman Evidence for the Working Mechanism of Fe DESs (A) The Raman spectra of 120- and 110-based Fe DESs. (B–D) The Raman spectra of 210-based Fe DESs (B); the Raman spectra of original, discharged, and charged (C) Fe(126) catholyte and (D) Fe(210) catholyte. Joule DOI: (10.1016/j.joule.2017.08.013) Copyright © 2017 Elsevier Inc. Terms and Conditions

Joule DOI: (10.1016/j.joule.2017.08.013) Copyright © 2017 Elsevier Inc. Terms and Conditions