Permutation A permutation of the numbers 1,2, and 3 is a rearrangement of these numbers in a definite order. Thus the six possibilities are 1 2 3 1.

Slides:



Advertisements
Similar presentations
Installment 7 Tables With No Column Presented by rexmen 2001 資管所.林彥廷.
Advertisements

Colorings of graphs and Ramsey’s theorem
Groups TS.Nguyễn Viết Đông.
 Definition 16: Let H be a subgroup of a group G, and let a  G. We define the left coset of H in G containing g,written gH, by gH ={g*h| h  H}. Similarity.
Algebraic Structures: Group Theory II
Section 13 Homomorphisms Definition A map  of a group G into a group G’ is a homomorphism if the homomophism property  (ab) =  (a)  (b) Holds for.
Algebraic Structures DEFINITIONS: PROPERTIES OF BINARY OPERATIONS Let S be a set and let  denote a binary operation on S. (Here  does not necessarily.
1 Chapter 5 Pólya’s throry of counting 5.1 簡介 5.2 重排群的等價類 (equivalence classes under a permutation group) 5.3 函數的等價類 5.4 函數的權重 (weight) 和目錄 (inventories)
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
1 集合論 Chapter 3. 2 Chapter 3 Set Theory 3.1 Sets and Subsets A well-defined collection of objects (the set of outstanding people, outstanding is very.
1.1 線性方程式系統簡介 1.2 高斯消去法與高斯-喬登消去法 1.3 線性方程式系統的應用(-Skip-)
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
Graph V(G 1 )={0, 1, 2, 3, 4, 5, 6, 7, 8, 9} E(G 1 )={(0, 2), (0, 3), (1, 4), (2, 3), (2, 5), (2, 6), (3, 6), (3, 7), (4, 7), (5, 6), (5,
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
5.1 Rn上之長度與點積 5.2 內積空間 5.3 單範正交基底:Gram-Schmidt過程 5.4 數學模型與最小平方分析
2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.
Chapter 13 塑模靜態觀點:物件圖 Static View : Object Diagram.
:Problem D: Bit-wise Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10232: Problem D: Bit-wise Sequence 解題者:李濟宇 解題日期: 2006 年 4 月 16.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
3-3 使用幾何繪圖工具 Flash 的幾何繪圖工具包括線段工具 (Line Tool) 、橢圓形工具 (Oval Tool) 、多邊星形 工具 (Rectangle Tool) 3 種。這些工具畫出 來的幾何圖形包括了筆畫線條和填色區域, 將它們適當地組合加上有技巧地變形與配 色, 不但比鉛筆工具簡單,
1 Chapter 3. 排列與組合 3.1 加法原則與乘法原則 3.2 排列 3.3 組合 3.4 Stirling’s Formula.
Digital Signal Processing with Examples in M ATLAB ® Chap 1 Introduction Ming-Hong Shih, Aug 25, 2003.
Chapter 2 Getting Started Insertion Sort: 能有效率地排序小數字的演算法 範例 :
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
The application of boundary element evaluation on a silencer in the presence of a linear temperature gradient Boundary Element Method 期末報告 指導老師:陳正宗終身特聘教授.
公用品.  該物品的數量不會因一人的消費而受到 影響,它可以同時地被多人享用。 角色分配  兩位同學當我的助手,負責:  其餘各人是投資者,每人擁有 $100 , 可以投資在兩種資產上。  記錄  計算  協助同學討論.
: A-Sequence ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10930: A-Sequence 解題者:陳盈村 解題日期: 2008 年 5 月 30 日 題意: A-Sequence 需符合以下的條件, 1 ≤ a.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
JAVA 程式設計與資料結構 第二十章 Searching. Sequential Searching Sequential Searching 是最簡單的一種搜尋法,此演 算法可應用在 Array 或是 Linked List 此等資料結構。 Sequential Searching 的 worst-case.
演算法 8-1 最大數及最小數找法 8-2 排序 8-3 二元搜尋法.
: Automatic correction of misspellings ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11048: Automatic correction of misspellings 解題者:陳宜佐 解題日期:
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
Chapter 10 m-way 搜尋樹與B-Tree
2005/7 Linear system-1 The Linear Equation System and Eliminations.
: SAM I AM ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11419: SAM I AM 解題者:李重儀 解題日期: 2008 年 9 月 11 日 題意: 簡單的說,就是一個長方形的廟裡面有敵人,然 後可以橫的方向開砲或縱向開砲,每次開砲可以.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
:Rings and Glue ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10301: Rings and Glue 解題者:施博修 解題日期: 2011 年 5 月 18 日 題意:小約翰有了個大麻煩,他不小心將 rings.
1 Knapsack Cryptosystems 2 ◎ Merkle-Hellman Knapsack Cryptosystem 觀察: (1) 0/1 knapsack problem (i.e. sum of subset) 例:已知 C = 14, A = (1, 10, 5, 22, 3)
: How many 0's? ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 11038: How many 0’s? 解題者:楊鵬宇 解題日期: 2007 年 5 月 15 日 題意:寫下題目給的 m 與 n(m
Section 4.1 Finite Permutation Groups Permutation of a Set Let A be the set { 1, 2, …, n }. A permutation on A is a function f : A  A that is both one-to-one.
1 柱體與錐體 1. 找出柱體與錐體的規則 2. 柱體的命名與特性 3. 柱體的展開圖 4. 錐體的命名與特性 5. 錐體的展開圖
Lagrange's Theorem. The most important single theorem in group theory. It helps answer: –How large is the symmetry group of a volleyball? A soccer ball?
6.3 Permutation groups and cyclic groups  Example: Consider the equilateral triangle with vertices 1 , 2 , and 3. Let l 1, l 2, and l 3 be the angle bisectors.
Great Theoretical Ideas in Computer Science for Some.
Discrete Mathematics Chapter 2 Basic Structures : Sets, Functions, Sequences, and Sums 大葉大學 資訊工程系 黃鈴玲 (Lingling Huang)
Chapter 5: Permutation Groups  Definitions and Notations  Cycle Notation  Properties of Permutations.
Discrete Mathematics Chapter 7 Relations 感謝 大葉大學 資訊工程系 黃鈴玲老師 提供.
Discrete Mathematics Section 3.7 Applications of Number Theory 大葉大學 資訊工程系 黃鈴玲.
Math 3121 Abstract Algebra I Lecture 11 Finish Section 13 Section 14.
Discrete Mathematics Chapter 6 Advanced Counting Techniques.
Section 14 Factor Groups Factor Groups from Homomorphisms. Theorem Let  : G  G’ be a group homomorphism with kernel H. Then the cosets of H form a factor.
CS Lecture 14 Powerful Tools     !. Build your toolbox of abstract structures and concepts. Know the capacities and limits of each tool.
SECTION 9 Orbits, Cycles, and the Alternating Groups Given a set A, a relation in A is defined by : For a, b  A, let a  b if and only if b =  n (a)
Math 3121 Abstract Algebra I Lecture 14 Sections
SECTION 10 Cosets and the Theorem of Lagrange Theorem Let H be a subgroup of G. Let the relation  L be defined on G by a  L b if and only if a -1 b 
 Theorem 6.21: Let H be a subgroup of G. H is a normal subgroup of G iff g -1 hg  H for  g  G and h  H.  Proof: (1) H is a normal subgroup of G.
Group A set G is called a group if it satisfies the following axioms. G 1 G is closed under a binary operation. G 2 The operation is associative. G 3 There.
Prepared By Meri Dedania (AITS) Discrete Mathematics by Meri Dedania Assistant Professor MCA department Atmiya Institute of Technology & Science Yogidham.
Group.
Abstract Algebra I.
Great Theoretical Ideas In Computer Science
(1)The equation ax=b has a unique solution in G.
Math 3121 Abstract Algebra I
Discrete Mathematics Chapter 7 Relations.
Homomorphisms (11/20) Definition. If G and G’ are groups, a function  from G to G’ is called a homomorphism if it is operation preserving, i.e., for all.
Theorem 6. 6: Let [G;] be a group and let a and b be elements of G
Definition 19: Let [H;. ] be a normal subgroup of the group [G;. ]
Rayat Shikshan Sanstha’s S.M.Joshi College, Hadapsar -28
Presentation transcript:

Permutation A permutation of the numbers 1,2, and 3 is a rearrangement of these numbers in a definite order. Thus the six possibilities are 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1 可將每一個permutation看成{1,2,3}{1,2,3}的mapping. 11 11 12 12 13 13 22 23 21 23 21 22 33 32 33 31 32 31

Permutation n為正整數且 Xn={1,2,…,n}. 。 一個permutation為XnXn的one-to-one and onto mapping。 The set of all permutations of Xn is denoted Sn and is called the symmetric group of degree n.

Example S3 = {  |  is a permutation of X3 ={1,2,3} } = { 1 , 2 , 3 , 4 , 5 , 6 }, where 1 2 3 4 5 6 11 11 12 12 13 13 22 23 21 23 21 22 33 32 33 31 32 31

Permutation If the permutations  : X4X4 is defined by (1)=3, (2)=1, (3)=4, and (4)=2, we write it as .

Permutation In general, given ∈Sn write it in matrix form as .

Example1 Denote the elements of S3 in matrix notation. Sol:

Theorem The set Sn of permutations of Xn has |Sn|=n! elements.

Let  and  be permutations in Sn Let  and  be permutations in Sn . Both are mappings from Xn to Xn, and we write them as follows: The composite  : XnXn with ( )(k)= ((k)) for all k∈Xn . is again a permutation in Sn.

Example Compute  and  if and . Sol: Note that ≠ in general. 

Identity permutation The identity permutation  in Sn is defined as In other words, (k)=k holds for every k∈Xn. It is easy to verify that == holds for all ∈Sn.

inverse If ∈Sn, the fact that  : XnXn is one-to-one and onto implies that a uniquely determined permutation -1 : XnXn exists (called the inverse of ), which satisfies (-1(k))=k and -1((k))=k, for all k∈Xn.

Example Find the inverse of in S8. Sol:

Theorem Let ,, and  denote permutations in Sn. Then (1)  is in Sn. (2) ==. (3) ()=(). (4) -1==-1.

Example The set Sn of all permutations of {1,2,···,n} is a group under composition, called the symmetric group of degree n.

Consider the permutation in S6. The action of  is described graphically as: 1 4 6 2 3

Let k1, k2, ···,kr be distinct elements of Xn Let k1, k2, ···,kr be distinct elements of Xn. Then the cycle =(k1, k2,···, kr ) is the permutation in Sn defined as (ki) = ki+1 if 1  i  r-1 (kr) = k1 (k) = k if k{k1, k2, ···,kr } We say that  has length r and refer to  as an r-cycle.

Example Write in cycle notation. =(1, 4, 6, 2, 7, 3). Sol: =(1, 4, 6, 2, 7, 3). 因為5對到5,所以沒出現在cycle中。

Theorem If  is an r-cycle, then -1 is also an r-cycle. In fact, if  = (k1,k2,···, kr-1, kr) , then -1= (kr, kr-1, ···, k2, k1) .

Example Consider in S10 . 1 2 3 7 5 10 8 4 6 9

 is the product of these cycles =(1, 3, 7, 2)(4, 6)(5, 10, 8). The four cycles are (1, 3, 7, 2),(4, 6),(5, 10 , 8), and (9) =  .These are pairwise disjoint.  is the product of these cycles =(1, 3, 7, 2)(4, 6)(5, 10, 8). 4 6 9

Example Factor as a product of (pairwise) disjoint cycles. =(1, 5, 9, 7, 4)(2, 12, 8, 3)(6, 11, 13)

Cycle Decomposition 若≠為Sn中的permutation,則一定可以表示成length至少為2的之disjoint cycle的composition 。 若不考慮的排序,則此表示法為唯一。

List all the elements of S4, each factored into disjoint cycles. (1,2) (1,2,3) (1,3,2) (1,2)(3,4) (1,2,3,4) (1,3) (1,2,4) (1,4,2) (1,3)(2,4) (1,2,4,3) (1,4) (1,3,4) (1,4,3) (1,4)(2,3) (1,3,2,4) (2,3) (2,3,4) (2,4,3) (1,3,4,2) (2,4) (1,4,2,3) (3,4) (1,4,3,2)

Transposition A cycle of length 2 is called a transposition. Thus each transposition  has the form =(m, n), where m≠n.

Theorem Every cycle of length r > 1 is a product of r –1 transpositions: (k1, k2,···, kr)=(k1,k2)(k2,k3) ··· (kr-2,kr-1)(kr-1,kr). Hence every permutation is a product of transpositions.

Example (1, 2, 3) = (1, 2)(2, 3) (1, 2, 3, 4) = (1, 2)(2, 3)(3, 4) (1, 2, 3, 4, 5) = (1, 2)(2, 3)(3, 4)(4, 5) (1, 2, 3, 4, 5, 6) = (1, 2)(2, 3)(3, 4)(4, 5)(5, 6)

Remark Factorizations into transpositions are not unique. For example, (2,3)(1,2)(2,5)(1,3)(2,4)=(1,2,4,5)=(1,5)(1,4)(1,2).

Parity Theorem 若n ··· 21與m ··· 21為permutation 的兩種transposition的composition,則m與n必同為even或同為odd。

A permutation  is called even or odd according as it can be written in some way as the product of an even or odd number of transpositions. The set of all even permutations in Sn is denoted An and is called the alternating group of degree n.

Example Determine the parity of Solution: We have  = (1, 5, 7, 2, 4)(3, 6, 8, 9) =(1,5)(5,7)(7,2)(2,4)(3,6)(6,8)(8,9) So  is odd because it has a product of 7 transpositions.

Remark Since every cycle of length r > 1 is a product of r –1 transpositions: (k1 k2 ··· kr)=(k1 k2)(k2 k3) ··· (kr-2 kr-1)(kr-1 kr). Hence permutation =12···r, where i is a cycle of length ai, has a product of a1+a2+···+ar -r transpositions.

Example Determine the parity of Solution: We have  = (1 5 7 2 4)(3 6 8 9) So  is odd because it has a product of 5+4-2=7 transpositions.

List all the elements of S4, each factored into disjoint cycles. (1,2) (1,2,3) (1,3,2) (1,2)(3,4) (1,2,3,4) (1,3) (1,2,4) (1,4,2) (1,3)(2,4) (1,2,4,3) (1,4) (1,3,4) (1,4,3) (1,4)(2,3) (1,3,2,4) (2,3) (2,3,4) (2,4,3) (1,3,4,2) (2,4) (1,4,2,3) (3,4) (1,4,3,2)

List all the elements of A4. (1,2) (1,2,3) (1,3,2) (1,2)(3,4) (1,2,3,4) (1,3) (1,2,4) (1,4,2) (1,3)(2,4) (1,2,4,3) (1,4) (1,3,4) (1,4,3) (1,4)(2,3) (1,3,2,4) (2,3) (2,3,4) (2,4,3) (1,3,4,2) (2,4) (1,4,2,3) (3,4) (1,4,3,2)

List all the elements of A4.  (1, 2, 3) (1, 3, 2) (1, 2)(3, 4) (1, 2, 4) (1, 4, 2) (1, 3)(2, 4) (1, 3, 4) (1, 4, 3) (1, 4)(2, 3) (2, 3, 4) (2, 4, 3)

Theorem Let n> 1. The set An has following properties. If , An, then -1,  An.  An. |An|=n!/2.

Example 由所有even permutations所成集合An會是Sn的subgroup,稱為 alternating group of degree n. Not that: 由所有odd permutations所成集合不會是group。

Example Find the order of Solution:  = (1, 2, 3)(4, 5) || = 6 = lcm(2, 3)

Theorem Let  be a permutation in Sn with factorization  = 1 2… r into disjoint cycles. Then || = lcm(|1|, |2|, …, |r|).

Example Find the order of Solution:  = (1,5,10,13,4,14)(2,7,12,6,11)(3,9) || = lcm(6,5,2) = 30.

Example    = (1, 2)(3, 4) and  = (1, 4)(2, 3) 2 = , 2 = , 1 2  = =(13)(24) 1 2 4 3  

Example Find a group of motions of an equilateral triangle(正三角形). Solution:  =(123) —旋轉120° 2 =(132) —旋轉240°  =(12) —對L3翻轉   =(23) —對L1翻轉  2 =(13) —對L2翻轉 The group of motion is S3  D3

Theorem If n3, the group of motions of a regular n-gon(正n邊形) is isomorphic to Dn.

Cayley’s Theorem Every group G of order n is isomorphic to a subgroup of Sn.

Exercise 4.1 True or False 1,2,3,4,6,7,8,11 Exercise 7,8,10,14,15,18

Coset Let H be a subgroup of a group G and a∈G. Ha = { ha | h∈H } --- right coset of H generated by a aH = { ah | h∈H } --- left coset of H generated by a

Klein group K4 = {1,a,b,ab}, |a| = |b| = 2, ab = ab Let H = {1,a} right cosets H1 =H Ha ={a,a2}={a,1}=H Hb ={b,ab} H(ab) ={ab,a2b}={ab,b}=Hb

Theorem Let H be a subgroup of G, a,b∈G. (1) Ha = H iff a∈H (2) If a∈Hb ,then Ha = Hb (3) Either Ha  Hb =  or Ha = Hb. Note that Ha may not be equal to aH.

Example G = a with |a| = 6, find coset of H = a3  and K = a2 Solution: H = {1, a3}= Ha3 Ha = {a, a4}= Ha4 Ha2 = {a2, a5}= Ha5 K = {1, a2, a4} =Ka2=Ka4 Ka = {a, a3, a5} =Ka3=Ka5

Lemma Let H be a finite subgroup of a group G. Then |H| = |Ha| = |aH| for all a∈G. Proof: Let f: H  Ha with f(h) = ha. Then f is a bijection. So |H| = |Ha|. Similarly, |H| = |aH|.

index 若H為G的subgroup,則H對G的相異的left coset的數量稱為H在G上的index,記為[G:H]。 If H is a subgroup of a finite group G, then .

Lagrange’s Theorem 若H為finite groupG的subgroup,則 |G| = |H|[G:H]. Proof: Suppose Ha1,………, Hak are distinct cosets of H in G. Then k=[G:H] and |Ha1|+………+|Hak| = |G|. This implies k|H| = |G| since |H| = |Hai| for each i. So |G| = |H|[G:H].

Corollary 若H為G的subgroup,則|G|被|H|整除。也就是說 |H|為|G|的因子。

Normal subgroup Let H be a subgroup of G. Note that Hg may not be equal to gH. H is normal if gH=Hg for all g∈G. We write H  G. Example: {1}  G

Theorem Let K be a normal subgroup of G and let G/K={Ka|a∈K}.Then G/K is a group under Ka‧Kb=Kab. The group G/K of all cosets of K in G is called the quotient group (or factor group) of G by K. Example: Z/nZ  Zn

Theorem Let K be a normal subgroup of a finite group G. Then |G/K|=|G|/|K|=[G:K]

Basic facts Let K be a normal subgroup of a group G, and let a,bG. Then (1) Ka=Kb if and only if ab-1K. (2) Ka=K if and only if aK. (3) Ka  Kb = Kab. (4) K=K1 is the identity of G/K. (5) (Ka)-1=Ka-1. (6) (Ka)k=Kak for all kZ.

Example G=<a>,|a|=12, K=<a4> The cosets are K={1,a4,a8} Ka={a,a5,a9}=Ka5=Ka9 Ka2={a2,a6,a10}=Ka6=Ka10 Ka3={a3,a7,a11}=Ka7=Ka11 G/K=<Ka> The Cayley table G/K K Ka Ka2 Ka3 C4

Example Let K={,(12)(34),(13)(24),(14)(23)}. Show that KA4 . Find A4/K and write down the Cayley table. Solution: A4 = K  {(123),(132),(124),(142),(134),(143),(234),(243)} K=K=K (123)K=K(123)={(123),(243),(142),(134)} (132)K=K(132)={(132),(143),(234),(124)} =[K(123)]2 A4/K=<K(123)> A4/K K K(123) K(132)

Image and Kernel  : G  G1 homomorphism Image im() = (G) = { (g) | g∈G} Kernel ker() = { k∈G | (k) = 1} (G) G1 G 1 ker()

Theorem  : G  G1 homonorphism (1) (G) is a subgroup of G1 (2) ker() is a normal subgroup of G

Remark im() may not normal in G. Let H be a subgroup of G and H  G. Then  : H  G with (h) = h is homomorphism and (H) = H  G

Fundamental Theorem of Homomorphisms  : G  G1 homomorphism and onto. Then G/ker()  G1. Let K = ker(). Then  : G/K  G1 with (Ka) = (a) is an isomorphism.

Exercise 4.4 True or False 1,3,5,7,8 Exercise 5,11,20,21,24,27

Exercise 4.5 True or False 2,3 Exercise 2,8

Exercise 4.6 True or False 1,2 Exercise 5,13a,24