Roman Schnabel for the AEI-Division Karsten Danzmann

Slides:



Advertisements
Similar presentations
Stefan Hild for the GEO600 team October 2007 LSC-Virgo meeting Hannover Homodyne readout of an interferometer with Signal Recycling.
Advertisements

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Laser Interferometer Gravitational-wave Detectors: Advancing toward a Global Network Stan Whitcomb LIGO/Caltech ICGC, Goa, 18 December 2011 LIGO-G v1.
T1 task- update Mike Plissi. 2 Collaboration Groups actively involved INFN-VIRGO MAT IGR-Glasgow Groups that have expressed interest INFN-AURIGA CNRS-LKB.
G v1Advanced LIGO1 Status of Ground-Based Gravitational-wave Interferometers July 11, 2012 Daniel Sigg LIGO Hanford Observatory Astrod 5, Bangalore,
G v1Squeezed Light Interferometry1 Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory.
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Next generation nonclassical light sources for gravitational wave detectors Stefan Ast, Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina Vollmer,
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Overview of Advanced LIGO March 2011 Rencontres de Moriond Sheila Rowan For the LIGO Scientific Collaboration.
Ponderomotive Squeezing & Opto-mechanics Adam Libson and Thomas Corbitt GWADW 2015 G
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
Quantum Noise Measurements at the ANU Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Sheila Dwyer, Ben Buchler, Ping Koy Lam, Daniel Shaddock, and David.
Katrin Dahl for the AEI 10 m Prototype team March 2010 – DPG Hannover Q29.1 Stabilising the distance of 10 m separated.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Experiments towards beating quantum limits Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
Test mass dynamics with optical springs proposed experiments at Gingin Chunnong Zhao (University of Western Australia) Thanks to ACIGA members Stefan Danilishin.
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
A. Bunkowski Nano-structured Optics for GW Detectors 1 A.Bunkowski, O. Burmeister, D. Friedrich, K. Danzmann, and R. Schnabel in collaboration with T.
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
LIGO-G D Enhanced LIGO Kate Dooley University of Florida On behalf of the LIGO Scientific Collaboration SESAPS Nov. 1, 2008.
The AEI 10 m prototype interferometer Stefan Goßler for the 10 m prototype team DPG, March 2009.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
LIGO- G D The LIGO Instruments Stan Whitcomb NSB Meeting LIGO Livingston Observatory 4 February 2004.
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Status of the Advanced LIGO PSL development LSC meeting, Baton Rouge March 2007 G Z Benno Willke for the PSL team.
Thermal Noise performance of advanced gravitational wave detector suspensions Alan Cumming, on behalf of the University of Glasgow Suspension Team 5 th.
Opto-mechanics with a 50 ng membrane Henning Kaufer, A. Sawadsky, R. Moghadas Nia, D.Friedrich, T. Westphal, K. Yamamoto and R. Schnabel GWADW 2012,
Alexander Khalaidovski, Henning Vahlbruch, Hartmut Grote, Harald Lück, Benno Willke, Karsten Danzmann and Roman Schnabel STATUS OF THE GEO HF SQUEEZED.
AIC, LSC / Virgo Collaboration Meeting, 2007, LLO Test-mass state preparation and entanglement in laser interferometers Helge Müller-Ebhardt, Henning Rehbein,
Ultra-stable, high-power laser systems Patrick Kwee on behalf of AEI Hannover and LZH Advanced detectors session, 26. March 2011 Albert-Einstein-Institut.
GEO Status and Prospects Harald Lück ILIAS / ETmeeting Cascina November 2008.
Harald Lück AEI Hannover. Thank you Science Team! You did a great job!
QND, LSC / Virgo Collaboration Meeting, 2007, HannoverH. Müller-Ebhardt Entanglement between test masses Helge Müller-Ebhardt, Henning Rehbein, Kentaro.
THE NEXT GENERATIONS OF GRAVITATIONAL WAVE DETECTORS (*) Giovanni Losurdo INFN Firenze – Virgo collaboration (*) GROUND BASED, INTERFEROMETRIC.
Optomechanics Experiments
ET-ILIAS_GWA joint meeting, Nov Henning Rehbein Detuned signal-recycling interferometer unstableresonance worsesensitivity enhancedsensitivity.
Yoichi Aso Columbia University, New York, NY, USA University of Tokyo, Tokyo, Japan July 14th th Edoardo Amaldi Conference on Gravitational Waves.
1 Daniel Friedrich GWADW Kyoto – May 17th, 2010 Waveguide grating mirrors Insights from the inside Future Past Present Daniel Friedrich, Michael Britzger,
H1 Squeezing Experiment: the path to an Advanced Squeezer
Advanced Detector Status Report and Future Scenarios
Detuned Twin-Signal-Recycling
Current and future ground-based gravitational-wave detectors
The Search for Gravitational Waves with Advanced LIGO
Quantum Opportunities in Gravitational Wave Detectors
New directions for terrestrial detectors
Overview of quantum noise suppression techniques
The Quantum Limit and Beyond in Gravitational Wave Detectors
Progress toward squeeze injection in Enhanced LIGO
Interferometric speed meter as a low-frequency gravitational-wave detector Helge Müller-Ebhardt Max-Planck-Institut für Gravitationsphysik (AEI) and Leibniz.
Nergis Mavalvala Aspen January 2005
Yet another SQL? Tobias Westphal
MIT Corbitt, Goda, Innerhofer, Mikhailov, Ottaway, Pelc, Wipf Caltech
Generation of squeezed states using radiation pressure effects
Nergis Mavalvala MIT IAU214, August 2002
Quantum noise reduction techniques for the Einstein telescope
Homodyne readout of an interferometer with Signal Recycling
Quantum effects in Gravitational-wave Interferometers
Ponderomotive Squeezing Quantum Measurement Group
Australia-Italy Workshop October 2005
Advanced LIGO Quantum noise everywhere
Squeezed states in GW interferometers
Quantum studies in LIGO Lab
Test Mass Suspensions for AIGO
LIGO Quantum Schemes NSF Review, Oct
Squeezed Light Techniques for Gravitational Wave Detection
Advanced Optical Sensing
Presentation transcript:

Roman Schnabel for the AEI-Division Karsten Danzmann Measurement and Observation at the Quantum Limit at the Albert-Einstein Institute Hannover Roman Schnabel for the AEI-Division Karsten Danzmann

AEI-Division Prof. Karsten Danzmann Dr. Hartmut Grote Gravitational wave detector GEO600 Dr. Harald Lück GEO600+HF and Einstein Telescope Priv.-Doz. Dr. Benno Willke Laser Development, and Advanced LIGO Dr. Stefan Goßler 10 m Prototype facility* Priv.-Doz. Dr. Gerhard Heinzel Space Interfero-metry Prof. Roman Schnabel Quantum Interfero-metry * Led by external member Prof. Ken Strain, Glasgow

The GEO600 Project Michelson Laser Interferometer (600m) for GW detection German-British collaboration, location Hannover / Germany Limited by quantum noise U Birmingham U Mallorca Glasgow

GEO 600 GEO-HF: - 30kW - DC readout - OMC - Tuned, broadband SR H. Grote GEO 600 GEO-HF: - 30kW - DC readout - OMC - Tuned, broadband SR - Squeezed Light C. Caves (1981): Replace the vacuum state (zero-point fluctuations) by a squeezed state! 4 4

Shot noise squeezed

This is not just a proof of principle! GEO600 regularly uses squeezed light during its observational runs. An application of quantum metrology today! Regular use: [Grote, Danzmann, Dooley, Schnabel, Vahlbruch, Phys. Rev. Lett., accepted (2013)]

The Einstein-Telescope H. Lück The Einstein-Telescope 10 km arms under ground Cryo-cooled silicon mirrors 500 W @ 1064 nm Squeezed light at 1064 nm and 1550 nm (~10 dB) [M. Punturo et al., Class. Quantum Grav. 084007 (2010)] European conceptual design study, delivered May 2011 7

The Advanced LIGO 180 W-Laser B. Willke The Advanced LIGO 180 W-Laser LIGO Livingston Design and fabrication at the AEI/LZH. Three pre-stabilized 180 W- systems installed at LIGO. [Winkelmann et al., Appl. Phys. B. (2011); Kwee et al., Opt. Express (2012)] 8

Light Power Stabilisation B. Willke Light Power Stabilisation Relative power noise (shot-noise limited): 2 10-9 Hz- 1/2 4 Photodiodes, 50mA each, aligned for lowest pointing coupling 9

Light Power Stabilisation (>MHz) B. Willke Light Power Stabilisation (>MHz) Relative power noise of 150W: RPN=10-10 Hz-1/2 corresponding to 32 A photo current. 10

134 W of TEM00 green light B. Willke 1064nm (in) 130W @ 1064nm (out) 134W @532nm (130W in TEM00), single frequency, single mode, 90% conversion efficiency, stable for more than 48 hours. [T. Meier et al., Opt. Lett. 35, 3742 (2010)] 11

82 W of light in the LG33 Mode B. Willke Transfer of 140W HG00 into 82W LG33 with 95% mode purity. Offers reduction of thermal noise in future GW detectors. On-going collaboration with University of Birmingham. 12

The 10m-AEI-Prototype Facility S. Goßler / K. Strain The 10m-AEI-Prototype Facility UHV system, 180° view 100 m3 volume, currently @ about 5 x10-8 mbar (dominated by water vapour, air in 10-9 mbar region) 13

The 10m-AEI-Prototype Facility S. Goßler / K. Strain The 10m-AEI-Prototype Facility Suspended Tables, fres < 300 mHz 14

Vertical Isolation Performance S. Goßler / K. Strain Vertical Isolation Performance 101 100 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-1 100 101 102 Vertical ground motion Noise spectral density [ mm / Hz -1/2 ] Vertical table motion Theoretical model Frequency [Hz] 15

Monolithic Mirror Suspensions S. Goßler / K. Strain Monolithic Mirror Suspensions First blade spring stage Design: IGR Glasgow Monolithic Stages: Mechanics: AEI Hannover Upper mass with second blade spring stage Penultimate mass 20µm suspension fibers 100g mirror 16

Squeezed Light R. Schnabel Wigner function of >10dB squeezed vacuum state Parametric down-conversion in c2-nonlinear crystal in standing-wave cavity [Vahlbruch et al., Phys. Rev. Lett. (2008)] [Vahlbruch et al., New J. Phys. (2007)] [Eberle et al., Phys. Rev. Lett. (2010)] [Mehmet et al., Opt. Express (2011)] [Ast et al., Opt. Lett. (2012)] 17

Squeezed Light R. Schnabel Observed squeezing: Up to 12.7 dB @ 1064 nm Spectrum down to 1 Hz / up to 1 GHz The GEO600 Squeezer: Fully controlled, automated source of up to 10 dB from 10 Hz to > 10 kHz Parametric down-conversion in c2-nonlinear crystal in standing-wave cavity [Vahlbruch et al., Phys. Rev. Lett. (2008)] [Vahlbruch et al., New J. Phys. (2007)] [Eberle et al., Phys. Rev. Lett. (2010)] [Mehmet et al., Opt. Express (2011)] [Ast et al., Opt. Lett. (2012)] 18

The GEO600 Squeezed Light Laser R. Schnabel The GEO600 Squeezed Light Laser 19

Entangled Light for Metrology R. Schnabel Entangled Light for Metrology Einstein- Podolsky- Rosen entangled light beams [S. Steinlechner et al., arXiv:1211.3570] 20

Nano-Structured Mirrors R. Schnabel Nano-Structured Mirrors On-going collaboration with Jena University and IGR Glasgow Goal: reduction of mirror thermal noise Up to 100% Reflection (surface waveguide mirror) 0th -1st +1st 0th Finesse ~ 3000 Si crystal Destruktive Interference [Brückner, RS, Tünnermann et al., Phys. Rev. Lett. 104, 163903 (2010)] 21

Nano-Structured Mirrors R. Schnabel Nano-Structured Mirrors On-going collaboration with Jena University and IGR Glasgow Goal: reduction of mirror thermal noise Joint publications on nano-structured mirrors, suspended in the Glasgow 10m prototype facility Barr, Strain, Tünnermann, RS et al., Opt. Lett. 36, 2746 (2011). Friedrich, Strain, Tünnermann, RS et al., Opt. Express 19, 14955 (2011). Edgar, Strain, Tünnermann, RS et al., Class. Quantum Grav. 27, 084029 (2010). Edgar, Strain, Tünnermann, RS et al., Opt. Lett. 34, 3184 (2009). Hallam, Strain, RS et al., J. Opt. A: Pure Appl. Opt. 11, 085502 (2009). 22

Absorption Measurements on Silicon R. Schnabel Absorption Measurements on Silicon T = 300 K [J. Steinlechner et al., submitted to Class. Quantum Grav. (2013)] 23

Opto-Mechanics R. Schnabel 40 nm thickness meff = 80 ng Q-factor = 500.000 fres = 130 kHz R = 17 % @ 1064 nm J. D. Thompson, … & J. G. E. Harris, Nature 452, 72-75 (2008) T.J. Kippenberg and K.J. Vahala, Science 321, 1172 (2008) 24

Optically cooled membrane resonance: R. Schnabel Opto-Mechanics Optically cooled membrane resonance: From 300K to 8K 25

Proposal for an AEI / IGR IMPP Topic: “Ultra-quite Mirror Test Masses” Goals: Design and test of novel low-noise kg-sized mirror systems Possibly based on silicon For GW detectors operated at low temperatures For quantum physical experiments with massive objects Further strengthening the GWD related expertise in north Europe GEO600: 5 kg fused silica mirror with monolithic fibre suspension 26

Proposal for an AEI / IGR IMPP Topic: “Quantum Non-Demolition Interferometry” Goals: Design and test of novel interferometer techniques to surpass the standard quantum limit of gravitational wave detection generating entangled motion of kg-sized test masses (conditional states) A. Franzen, AEI Michelson interferometer with two readouts proposed for the generation of entangled mirrors 27

A B X1com(t) X2diff(t) BHD: Low finesse Michelson Interferometer with 2x balanced homodyne detection (BHD): ® Information on which the mechanical state can be conditioned* *also: [M. Haixing, S. Danilishin, H. Müller-Ebhardt, Y. Chen, New J. Phys. 12, 083032 (2010)] 28

Conditionally Pure Mirror States pA(t) − pB(t) xA(t) − xB(t) Problem: Thermal occupation number of mechanical oscillator: For pendulum with period 1s: W = 2p Hz n<1 ! ® T < 4∙10-10 K ! 29

Summary The AEI’s expertise: Operation and improvement of GEO600 Design activity on the Einstein Telescope Ultra-stable high-power laser light Squeezed and entangled light A new low-noise 10m prototype facility Research on nano-structured and silicon mirrors Opto-mechanics with micro-oscillators Combining these with the expertise in Scotland (IGR Glasgow) on GW detectors, low noise mirror suspensions, and low temperature experiments will provide an outstanding position for R&D for GW detectors and quantum physical experiments with massive objects.