Microwave and infrared spectra of urethane

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

+ TERAHERTZ SPECROSCOPY OF METHYLAMINE R. A. Motiyenko, L. Margulès Laboratoire PhLAM, Université Lille 1, France V.V. Ilyushin, E.A. Alekseev Insitute.
High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
DDS-BASED FAST SCAN SPECTROMETER Eugen A. Alekseev Institute of Radio Astronomy of NASU, Kharkov, Ukraine Roman A. Motiyenko and Laurent Margulès Laboratoire.
Microwave spectroscopy of 2-furancarboxylic acid Roman A. Motiyenko, Manuel Goubet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University Lille.
Microwave spectrum of furfuryl alcohol Roman A. Motiyenko, Manuel Goubet, Thérèse R. Huet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University.
OSU International Symposium on Molecular Spectroscopy meeting, June 19-23, in Columbus, Ohio, USA Microwave spectra of 3-amino-2-propenenitrile (H 2 N-CH=CH-CN),
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
11 The THz spectrum of GlycolAldehyde M. Goubet, T.R. Huet, I. Haykal, L. Margulès PhLAM, CNRS – Université de Lille 1 O. Pirali, P. Roy AILES beamline,
High Resolution Measurements and Electronic Structure Calculations of a Diazanaphthalene: [1,6]-naphthyridine. Sébastien Gruet, Manuel Goubet, Olivier.
Maria Eugenia Sanz, Carlos Cabezas, Santiago Mata, José L. Alonso The Rotational Spectrum of Tryptophan.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
Physique des Lasers, Atomes et Molécules
1 Infrared Spectroscopy of Ammonium Ion MG03: Sub-Doppler Spectroscopy of ND 3 H + Ions in the NH Stretch Mode MG04: Infrared Spectroscopy of Jet-cooled.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
Rotational spectroscopy of two telluric compounds : vinyl- and ethyl-tellurols R.A. MOTIYENKO, L. MARGULES, M. GOUBET Laboratoire PhLAM, CNRS UMR 8523,
The Microwave Spectrum of the HCOOCD 2 H species of Methyl Formate L. H. Coudert, a T. R. Huet, b L. Margulès, b R. Motyenko, b and H. Møllendal c a LISA,
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
HIGH RESOLUTION SPECTROSCOPY OF THE TWO LOWEST VIBRATIONAL STATES OF QUINOLINE C 9 H 7 N O. PIRALI, Z. KISIEL, M. GOUBET, S. GRUET, M.-A. MARTIN-DRUMEL,
+ MILLIMETER-WAVE SPECTROSCOPY OF ETHYLMERCURY HYDRIDE Manuel Goubet, Roman A. Motiyenko, Laurent Margulès Laboratoire PhLAM, Université Lille 1 Jean-Claude.
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
Molecular Spectroscopy Symposium June 2013 Identification and Assignment of the First Excited Torsional State of CH 2 DOH Within the o 2, e.
1 The extended spectroscopic database on formamide: parent, 13 C and deuterated species up to 1 THz A.S. Kutsenko Institute of radio astronomy of NASU,
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
Torsional Splitting in the Rotational Spectrum from 8 to 650 GHz of the Ground State of 1,1-Difluoroacetone L. Margulès, R. A. Motiyenko, Université de.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
Sub-Doppler Jet-Cooled Infrared Spectroscopy of ND 2 H 2 + and ND 3 H + in NH Stretch Fundamental Modes Astronomical Molecular Spectroscopy in the Age.
Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz. Ivan Smirnov a, Eugene Alekseev a, Vadim Ilyushin.
Terahertz spectroscopy of deuterated methylene bi-radicals, CHD and CD 2 Stéphane Bailleux June 25, 2015 – 70 th ISMS.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Rotational Spectra of N 2 O-H 2 Complexes University of Alberta Jen Nicole Landry and Wolfgang Jäger June 23, 2005.
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
Jet-cooled infrared laser spectroscopy in the umbrella 2 vibration region of NH3: improving the potential energy surface model of the NH3-Ar van der Waals.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
The microwave spectroscopy study of 1,2-dimethoxyethane
Rotational Spectroscopy and Search for Methoxymethanol in the ISM
Christopher T. Dewberry, Garry S
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
STEPHEN G. KUKOLICH, MING SUN, ADAM M. DALY University of Arizona
MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES V. Ilyushin1, I. Armieieva1, O. Dorovskaya1,
Characterisation and Control of Cold Chiral Compounds
Carlos Cabezas and Yasuki Endo
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
MICROWAVE SPECTROSCOPY OF 2-PENTANONE
Hiroyuki Ozeki, Rio Miyahara, Hiroto Ihara, Satoshi Todaka,
THE TORSIONAL FUNDAMENTAL BAND AND ROTATIONAL SPECTRA UP TO 940 GHZ OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE V.V. Ilyushin1,
THE MILLIMETER-WAVE SPECTRUM OF VINYL ACETATE
MILLIMETER WAVE SPECTRUM OF NITROMETHANE
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Spin-Rotation Spectroscopy and Dynamics of Hydroxymethyl Radical (H2COH) Chih-Hsuan Chang, Fang Wang, and David J. Nesbitt JILA Illinois Symposium on.
Microwave Measurements of Cyclopropanecarboxylic Acid and its Doubly Hydrogen Bonded Dimer with Formic Acid Aaron M. Pejlovas, Kexin Li, Dr. Stephen G.
THE MILLIMETER-WAVE SPECTRUM OF METHACROLEIN
Bob Grimminger and Dennis Clouthier
The Rotational Spectrum of cis- and trans-HSSOH
THE STRUCTURE OF PHENYLGLYCINOL
Angela Y. Chung, Eric A. Arsenault, and Stewart E. Novick
Fourier transform microwave spectra of n-butanol and isobutanol
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
Terahertz spectroscopy of the ground state of methylamine (CH3NH2)
A. M. Daly, B. J. Drouin, J. C. Pearson, K. Sung, L. R. Brown
Fourier Transform Infrared Spectral
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
The torsional spectrum of doubly deuterated methanol CHD2OH
Halogen bonding vs hydrogen bonding: CHF2INH3 vs CHF2IN(CH3)3
COMPREHENSIVE ANALYSIS OF INTERSTELLAR
Elias M. NEEMAN and Thérèse R. HUET
Presentation transcript:

Microwave and infrared spectra of urethane Roman A. Motiyenko, Manuel Goubet, Justin Habinshuti, Therese H. Huet Laboratoire PhLAM, Universite Lille 1, 59655 Villeneuve d’Ascq Cedex, France Eugen A. Alekseev Institute of Radio Astronomy of NASU, 4, Chervonopraporna str., Kharkov, Ukraine Pierre Asselin, Pascale Soulard Universite Pierre et Marie Curie, Bat. F74 - Case 49, 4 place Jussieu, F- 75252, Paris Cedex 05, France

Urethane (ethyl carbamate) Two lowest-energy conformers: I and II Important astrophysical precursors: NH3 and C2H5OH Possible carcinogen and is present in some alcoholic beverages, therefore should be controlled Conformer I Previous study: K. M. Marstokk and H. Mollendal, Acta Chem. Scandinavica, vol. 53, 329-334 (1999) Microwave spectra of the conformers I and II of urethane in 16.5 – 56 GHz frequency range 14N hyperfine structure was not resolved → relatively large errors for this frequency range ~0.1 MHz MP2/cc-pVTZ and B3LYP/6-31G* ab initio calculations Conformer II

MWFT spectroscopy Microwave Fourier transform spectrometer with a pulsed supersonic jet. Spectra were obtained in the frequency range 5 – 20 GHz. The spectral resolution about 10 kHz allowed to study nuclear quadrupole and spin-spin hyperfine structures Carrier gas P= 1.5 bars (Ne) Inside the cavity… (not at the scale) Heated nozzle T= 373±2 K Mirror Urethane

Conformer I reassignment Basis for predictions: K. M. Marstokk and H. Mollendal, Acta Chem. Scandinavica, vol. 53, 329-334 (1999) (*) Q-type transitions were easily assigned Problems with R-type transitions. Lines are not in their positions ± 10 MHz!!! According to (*): A=8999.137 MHz B=2146.270 MHz C=1776.159 MHz 111 ← 000 : A+C = 10775 MHz 10755 MHz 212 ← 101 : A+3C = 14327 MHz 14288 MHz Reason: Wrong assignment of weak aR-type in (*) a ~ 0.6 D A=8989 MHz B=2136 MHz C=1766 MHz !!!

Hyperfine structure

MW conventional spectroscopy MW spectrometer in Kharkov Frequency range in this study: 50 – 150 GHz Resolution: 50 – 100 kHz – hyperfine structure is partially resolved Precision in this study: 10 kHz MW spectrometer in Lille Frequency range in this study:150 – 250 GHz Resolution: 100 – 300 kHz – hyperfine structure is not resolved Precision in this study: 20 – 40 kHz No heated absorbing cell available → the sample was heated only up to 313 K.

MW spectrometer in Kharkov BWO, 50 – 150 GHz PLL IF = 25 MHz FM modulated synthesizer 25 MHz Klystron 3.4 – 5.2 GHz IF = 5 MHz Absorbing cell Amplifier Lock-in detector Sine wave synthesizer 7 – 120 KHz DAC DDS AD9851 30 – 60 MHz Band-pass amplifier 390-430 MHz Synthesizer 360 MHz Frequency divider f/2 Frequency Doubler (optional) Detector Schottky Reference synthesizer 390-430 MHz

MW spectrometer in Lille BWO power source BWO Bolometer Absorbing cell PLL IF = 312 – 328 MHz Amplifier Fmod=5 kHz Synthesizer НР 3326В 9.75-10.25 MHz Synthesizer НР 83711В 2 – 20 GHz Lock-in detector GPIB bus PLL lock control GPIB controller ADC ADuC 834

Microwave spectra (Kharkov) The strongest lines correspond to Ka = 11← 10 series of bQ1,-1 transitions of conf. II

Microwave spectra (Lille) The series of Ka = 20← 19 series of bQ1,-1 transitions of conf. II is well observable

MW results for conformer I Rotational parameters (A-reduction) Hyperfine structure parameters Ground state va=1 va=2 A, MHz 8989.50716(13) 8936.229(13) 8878.016(78) B, MHz 2136.621922(25) 2136.7518(14) 2137.4564(65) C, MHz 1766.526154(25) 1770.72478(19) 1776.06521(17) ΔJ, kHz 0.178197(13) 0.1882(18) 0.2215(77) ΔJK, kHz 1.236634(98) 1.246(94) 1.25(18) ΔK, kHz 5.2602(15) 6.18(10) 7.05(39) δJ, kHz 0.0346687(32) 0.03533(10) 0.04287(37) δK, kHz 0.64633(18) 0.499(65) 1.534(33) HJ, Hz 0.0000259(26) HJK, Hz -0.00130(12) HKJ , Hz -0.03086(47) HK, Hz 0.0387(50) hJ, Hz 0.0000108(10) hJK, Hz -0.000743(95) hK, Hz 0.0208(28) Nlines 962 138 120 RMS, MHz 0.0128 0.0069 0.0070 Quadrupolar GS va=1 va=2 χaa, MHz 2.1171(13) 1.25(85) 1.47(53) χbb, MHz 2.1665(29) 2.5(13) 2.54(87) χcc, MHz -4.2836(16) -3.82(47) -4.01(34) Spin-spin GS 3/2Daa, kHz -40.3(24) 3/2Dbb, kHz 14.0(63) 3/2Dcc, kHz 26.3(39)

MW results for conformer II Rotational parameters (A-reduction) Hyperfine structure parameters Ground state vt=1 va=1 A, MHz 7565.417996(90) 7551.7041(11) 7606.0885(17) B, MHz 2414.784375(28) 2397.83275(49) 2407.22405(54) C, MHz 2116.375036(34) 2105.34650(31) 2115.79939(68) ΔJ, kHz 0.916104(20) 1.16722(49) 0.81391(50) ΔJK, kHz 0.38570(10) 1.4546(16) -0.1609(33) ΔK, kHz 12.55849(59) 11.009(13) 14.496(22) δJ, kHz 0.0838211(62) 0.12025(20) 0.060494(88) δK, kHz -3.49567(65) -7.9403(21) -2.385(11) HJ, Hz -0.0013315(44) HJK, Hz -0.00512(13) -0.01004(17) 0.00879(11) HKJ , Hz -0.09992(39) -0.122(17) -0.0844(29) HK, Hz 0.08545(98) hJ, Hz -0.0007311(15) hJK, Hz 0.08097(47) hK, Hz 0.6947(28) Nlines 1121 240 145 RMS, MHz 0.0124 0.0153 0.0101 Quadrupolar GS vt=1 va=1 χaa, MHz 1.8921(11) 2.17(59) 1.38(54) χbb, MHz 1.8922(22) 1.72(88) 2.16(83) χcc, MHz -3.7843(11) -3.89(29) -3.54(29) Spin-spin GS 3/2Daa, kHz -61.4(15) 3/2Dbb, kHz 34.7(31) 3/2Dcc, kHz 26.7(16)

Ab initio structure Conformer I Conformer II A (MHz) B (MHz) C (MHz) a (Deb.) b (Deb.) c (Deb.) MP2/ 6-311++G(3df,2p) 9007.9 2151.9 1776.2 0.63 2.51 0.61 7588.5 2443.5 2133.1 0.07 2.28 1.06 aug-cc-pVDZ 8835.4 2118.2 1747.7 -0.66 -2.48 0.69 7423.1 2411.8 2102.4 -0.01 -2.23 1.16 aug-cc-pVTZ 8984.4 2148.1 1773.0 0.65 2.48 0.67 7571.7 2439.6 2127.9 0.01 2.25 1.11 cc-pVQZ 9028.5 2158.0 1781.3 0.60 0.68 7612.0 2448.3 2136.6 0.05 1.12 Experiment 8989.5 1766.5 7565.4 2414.8 2116.4 In case of long range interactions addition of diffuse functions makes calculations more precise

Conformational stability According to H. Mollendal Conformer I is found to be 0.12(12) kcal/mol more stable than Il by relative intensity measurements. MP2/ 6-311++G (3df,2p) aug-cc-pVDZ aug-cc-pVTZ cc-pVQZ E(MP2) E(MP2) – ZPE Conf. I, kcal/mol -202799.14 -202640.18 -202805.36 -202737.15 -202855.75 Conf. II, kcal/mol -202799.24 -202640.39 -202805.46 -202737.16 -202855.83 I–II, kcal/mol 0.10 0.21 0.01 0.08

IR spectra assignment (preliminary) Spectral range: 1000 – 1900 cm-1 Resolution: 0.1 cm-1 Conformer I Conformer II  MP2/aug-cc-pVTZ Exper. I (km/mol) n (cm-1) 15 140.7 1126.7 1078 19 425.1 1353.0 1333 20 62.0 1412.4 1379 25 119.4 1623.2 1580 26 410.2 1806.9 1778  MP2/aug-cc-pVTZ Exper. I (km/mol) n (cm-1) 16 111.3 1136.1 1107 18 20.0 1342.3 1267 19 353.8 1358.3 1330 20 54.2 1408.7 1375 21 25.5 1431.9 1401 25 121.0 1621.8 1580 26 392.1 1805.3 1769

Acknowledgements PEPCO-NEI network (project nr 509031H) INTAS (YSF grant, ref. nr 06-1000014-5984) PhLAM laboratory and G. Wlodarczak

Thank you for your attention!