Materials 1.2.1A Resource Page Coloring utensils Small paper clips.

Slides:



Advertisements
Similar presentations
Gl: Students will be expected to conduct simple experiments to determine probabilities G2 Students will be expected to determine simple theoretical probabilities.
Advertisements

12-1 Introduction to Probability Course 1 Warm Up Warm Up Lesson Presentation Lesson Presentation Problem of the Day Problem of the Day.
Probability Lesson
Probability Abney Elementary.
Lesson 6.6 Probability Students will be able to determine theoretical probabilities.
Probability Vocabulary.
Probability What are your Chances? Overview Probability is the study of random events. The probability, or chance, that an event will happen can be described.
What is Probability? The study of probability helps us figure out the likelihood of something happening. In math we call this “something happening” or.
Bell Work A card is drawn at random from the cards shown and not replaced. Then, a second card is drawn at random. Find each probability. 1. P(two even.
Learning Target: I can… Find the probability of simple events.
Theoretical Probability
Bell Work Suppose 10 buttons are placed in a bag (5 gray, 3 white, 2 black). Then one is drawn without looking. Refer to the ten buttons to find the probability.
Probabilities and Collecting Data. At a school carnival, there is a game in which students spin a large spinner. The spinner has 4 equal sections numbered.
Estimating Probabilities by Collecting Data
PROBABILITY! Let’s learn about probability and chance!
Probability: Simple and Compound Independent and Dependent Experimental and Theoretical.
Level34567 Probability Skills I can use the probability words impossible, certain and even chance to describe the probability of an event occurring. I.
Chance Experiments Have you ever heard a weatherman say there is a 40% chance of rain tomorrow or a football referee tell a team there is a 50/50 chance.
Bell Work FRACTIONDECIMALPERCENTWORDS. You have probably heard a weather forecaster say that the chance of rain tomorrow is 40%. Have you thought about.
PROBABILITY.
Bell Work Find the Probability 1.A box contains 10 red, 4 blue, and 4 white marbles. Choose a blue marble, then a red marble. 2.A jar contains 6 cinnamon.
Bell Work/Cronnelly. A= 143 ft 2 ; P= 48 ft A= 2.3 m; P= 8.3 m A= ft 2 ; P= 76 ft 2/12; 1/6 1/12 8/12; 2/3 6/12; 1/2 0/12 4/12; 1/3 5/12 6/12; 1/2.
Cronnelly/Bell Work Convert each percent into decimal and a fraction: 1)1.36% 2)254% 3)16.25% Convert each decimal into percent and a fraction: 7)
PROBABILLITY Transition Math What is Probability? Probability is a number from 0 to 1 that tells you how likely something is to happen. Probability can.
 What do you think it means for an event to have a probability of ½ ?  What do you think it means for an event to have a probability of 1/4 ?
Probability You will learn to identify the probability of an event as certain, impossible, maybe likely or maybe not likely, use a number line to show.
PROBABILITY! Let’s learn about probability and chance!
Name _____ 6__Lesson 6 Theoretical Probability June __ Page 271.
Bell Work decimal Write as fraction and percent.
Probability.
Theoretical Probability
PROBABILLITY Transition Math.
Theoretical Probability
Probability.
Bell Work.
Probability.
KS4 Mathematics D6 Probability.
Basic Skills Jada will use a random number generator 1,200 times. Each result will be a digit from 1 to 6. Which statement best predicts how many times.
Probability Today you will need …… Orange Books Calculator Pen Ruler
Probability Today you will need to make sure you have
Tuesday, August 25, 2015 DO NOW On the opener sheet that you picked up, respond to the following questions in the “Tuesday” box Imagine that you have.
Probability.
Probability Probability is a measure of how likely an event is to occur. For example – Today there is a 60% chance of rain. The odds of winning the lottery.
= 6.976−2.05= 4.7(9.5)= 6.5÷3.2= = Bell Work Cronnelly.
= 4.802−1.3= 2.09(2.8)= Bell Work 8.84÷3.4= − 3 4 = Cronnelly.
2+6.1= 6.6−1.991= 0.7(5.416)= 8.92÷1.6= = Bell Work Cronnelly.
Stage 3, Year 6 Chance.
Skill Review Unique has a bag of marbles. There are 4 colors of marbles: red, blue, yellow, and green. The table shows the frequencies of marbles after.
Copy problems and work Name: Date: Period: Bell Work 4.62÷0.44=
Bell Work.
Theoretical Probability
Copy problems and work Name: Date: Period: Bell Work 4.62÷0.44=
Creating a Number Line for Probability
Probability and Chance
PROBABILITY.
Probability.
Bell Work Calculators okay to use but show your work!
Probability.
Bell Work Cronnelly.
Bell Work into a decimal & a percent. 5) 8 9 (1 2 3 ) =
Probability.
Unit 8. Day 1..
Topic: Introduction to Probability
Let’s learn about probability and chance!
Theoretical Probability
Probability.
Probability.
Bell Work x x x x
PROBABILITY.
How likely it is that some events will occur?
Presentation transcript:

Materials 1.2.1A Resource Page Coloring utensils Small paper clips

Skill Review Alec bought 35 feet of window trim at a hardware store. The trim cost $1.75 per foot, including tax. If Alex paid with a $100.00 bill, how much change should he have received? $20.00 c. 61.25 $38.75 d. 80.00

You have probably heard a weather forecaster say that the chance of rain tomorrow is 40%.  Have you thought about what that means?  Does it mean that it will rain tomorrow for sure?  What is the chance that it will not rain?  In today’s lesson, you will investigate the chance, or the probability, of something happening or not happening.  As you do the activities, ask yourslef these questions: What is the probability of the event occurring? How can we record that probability?

1-50. POSSIBLE OR IMPOSSIBLE? Make lists of three different types of events: Events that you think are possible but not certain to happen, Events that certain to happen. Events that would be impossible to happen.  Complete the activities below: a. On the line segment label the left end “Impossible” and the right end “Certain.” b. At the “Impossible” end, write an event that we decided could not happen.  How could you label the possibility of these events occurring with a percentage? 

1-50. POSSIBLE OR IMPOSSIBLE? Then we will use our lists to complete the activities below: c. At the “Certain” end, write an event that we decided is certain to happen.  How could you label the possibility of these events occurring with a percentage?    d. Along the line, write the events that you thought were possible.  Place them along the line in order from closer to impossible, somewhere in the middle, or closer to certain.

1-51. GO FISH Mike wants to win a giant stuffed animal at the carnival.  He decided to play the “Go Fish” game, which has three prizes: a giant stuffed animal, a smaller stuffed animal, and a plastic kazoo.  The game is set up with a tank containing 1 green fish, 3 blue fish, and 6 yellow fish. The game is set up so that every time a player goes fishing, he or she will catch a fish. a. If all of the fish in the tank are green, how would you describe the probability of Mike’s winning a giant stuffed animal?    

1-51. GO FISH b. The way the tank is set up (with 1 green, 3 blue, and 6 yellow fish), what are the chances that Mike will catch a black fish?  c. Given the information in the problem, what percent of the time would you expect Mike to catch a green fish and win the giant stuffed animal?  Be ready to explain your thinking. 

1-52.  You could expect Mike to win a giant stuffed animal 10% of the time.  A percentage is one way to express the probability that a specific event will happen.  You might also have said you expected Mike to win 1 out of every 10 attempts.  So the probability that Mike will win is   , because the 1 represents the number of desired outcomes (green fish that Mike can catch) and the 10 represents the number of possible outcomes (all the fish that Mike could catch). a. What is the probability that Mike will catch a blue fish? A green fish? A yellow fish?  Write each of these probabilities as a fraction and a percent.  b. Probabilities such as the ones you found in part (a) are called theoretical probabilities because they are calculated mathematically based on what is expected.   Place each fishes probability on the line of probability in problem 1-50

The rest should be green. 1-54. SPINNERS – THEORY vs. REALITY, Part One You will need to decide how to color the spinner so that it meets the following criteria: a. Which color is the most likely result of a spin?  Why?  b. Which color is the least likely result of a spin?  Why?  c. Determine the theoretical probability of the spinner landing on each of the four colors (red, yellow, blue, and green).  Express your answers as fractions and percents.    d. What is the probability of the spinner landing on purple?  Explain.  e. What is the probability of the spinner landing on either red or blue?  40%  should be red. should be yellow. 30% should be blue.  The rest should be green.

1-55. SPINNERS – THEORY vs. REALITY, Part Two Now you will use your new spinner to do an investigation. a. Each person should spin the spinner 10 times and record the color resulting from each spin.  b. Write the number of times the spinner landed on each color as the numerator of a fraction with the total number of spins as the denominator.  c. Now combine your data with the results from the rest of your classmates.  Use the class data to write similar fractions as you did in part (b) for each color.  

1-55. SPINNERS – THEORY vs. REALITY, Part 2 d. Recall that the numbers you calculated in part (c) of problem 1-54 are theoretical probabilities, because you calculated these numbers (before actually spinning the spinner) to predict what you expected to happen.  The numbers you found in your investigation (when you actually spun the spinner) are called experimental probabilities, because they are based on the results from an actual experiment or event.  Both theoretical and experimental probabilities can be written as a percent, a fraction, or a decimal. i. Does it make sense that the theoretical probabilities and the experimental probabilities you calculated for the spinner might be different? Explain. ii. Does it make sense that the experimental probabilities that you found for the class are different from those found for just your team?

Practice

A bag contains 10 red marbles, 8 blue marbles and 2 yellow marbles. Lesson 1.2.1 Prep 7.SP.6 A bag contains 10 red marbles, 8 blue marbles and 2 yellow marbles. Find the probability for each event below. Write your answer as a fraction, decimal, and percent. P(blue) = P(red) = P(yellow) = P(red or blue) = Answer: P(blue) = 𝟖 𝟐𝟎 0.4 40% P(red) = 𝟏𝟎 𝟐𝟎 0.5 50% P(yellow) = 𝟐 𝟐𝟎 0.1 40% P(red or blue) = 𝟏𝟖 𝟐𝟎 0.9 90%