Michel Guidal (IPN Orsay)

Slides:



Advertisements
Similar presentations
DVCS at JLab Como, 11/06/2013. JLab published 6 GeV results JLab 6GeV analysis in progress JLab 12 GeV program.
Advertisements

Measurement of polarized distribution functions at HERMES Alessandra Fantoni (on behalf of the HERMES Collaboration) The spin puzzle & the HERMES experiment.
THE DEEP INELASTIC SCATTERING ON THE POLARIZED NUCLEONS AT EIC E.S.Timoshin, S.I.Timoshin.
Deeply Virtual Exclusive Reactions with CLAS Valery Kubarovsky Jefferson Lab ICHEP July 22, 2010, Paris, France.
Possibilities to perform DVCS measurement at COMPASS E. Burtin CEA-Saclay Irfu/SPhN On Behalf of the COMPASS Collaboration DIS Madrid - 29 April,
Jim Stewart DESY Measurement of Quark Polarizations in Transversely and Longitudinally Polarized Nucleons at HERMES for the Hermes collaboration Introduction.
Single-Spin Asymmetries at CLAS  Transverse momentum of quarks and spin-azimuthal asymmetries  Target single-spin asymmetries  Beam single-spin asymmetries.
The Quark Structure of the Nucleon Inti Lehmann & Ralf Kaiser University of Glasgow Cosener’s House Meeting 23/05/2007 Nucleon Structure Generalised Parton.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
Harut Avakian (Jlab) DVCS results with unpolarized and polarized target Introduction Event selection MC simulations and radiative corrections DVCS with.
Probing Generalized Parton Distributions
Measurement of Flavor Separated Quark Polarizations at HERMES Polina Kravchenko (DESY) for the collaboration  Motivation of this work  HERMES experiment.
For SoLID Collaboration Meeting Spokespersons Jian-Ping Chen (JLab) Jin Huang (MIT) Yi Qiang (JLab) Wenbiao Yan (USTC, China)
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
Time-like Compton Scattering with CLAS12 S. Stepanyan (JLAB) CLAS12 European Workshop February 25-28, 2009, Genova, Italy.
General introduction to GPDs From data to GPDs General introduction to GPDs From data to GPDs.
Generalized Parton Distributions: A general unifying tool for exploring the internal structure of hadrons INPC, 06/06/2013.
6/28/20161 Future Challenges of Spin Physics Feng Yuan Lawrence Berkeley National Laboratory.
Single Target Spin Asymmetries and GPDs Jian-ping Chen, Jefferson Lab, Virginia, USA SSA Workshop, BNL, June 1-3, 2005 Nucleon structure and GPDs DVCS.
Status report of Hermes Status report of Hermes Delia Hasch Physics Research Committee, DESY Oct 27/ Spin physics:  finalised and new results on:
Timelike Compton Scattering at JLab
Prospects for GPD and TMD studies at the JLab Upgrade
Flavor decomposition at LO
JLab12 & EIC QCD workshop, 15/12/06.
Generalized Parton Distributions and Deep Virtual Compton Scattering
Probing strangeness in hard processes Laboratori Nazionali di Frascati
Unpolarized Azimuthal Asymmetries from the COMPASS Experiment
Studying GPDs at Jefferson Lab
Generalized Parton Distributions Michel Guidal (IPN Orsay)
Theory : phenomenology support 12 GeV
Accessing the gluon Wigner distribution in ep and pA collisions
Measurements of quark transversity and orbital motion in hard scattering Yoshiyuki Miyachi Tokyo Institute of Technology.
Luciano Pappalardo for the collaboration
Deeply Virtual Compton Scattering at HERMES
Co-Spokespersons: Zafar Ahmed, University of Regina
The Spin of the Nucleon --- The View from HERMES ---
3/19/20181 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
Wide Angle Compton Scattering
Measurement of GPDs at JLab and in Future at Colliders
Nucleon'05, 14/10/05 M. Guidal, IPN Orsay
towards a 3D imaging of hadrons
Beam Spin Asymmetry Measurements from Deeply Virtual Meson Production
Generalized Parton Distributions and the Structure of the Nucleon
Probing Generalized Parton Distributions (GPDs) in Exclusive Processes
--- New Results from HERMES ---
Deeply Virtual Compton Scattering at 11GeV with CLAS12
Semi-inclusive DIS at 12 GeV
Transverse distributions of polarized quarks
Generalized Parton Distributions at
Development of a framework for TMD extraction from SIDIS data
Selected Physics Topics at the Electron-Ion-Collider
Experimental overview on exclusive processes
4th Workshop on Exclusive Reactions at High Momentum Transfer
Single Spin Asymmetries: from JLab12 to EIC
Two-photon physics in elastic electron-nucleon scattering
University of Erlangen-Nürnberg & DESY
Deeply Virtual Neutrino Scattering at Leading Twist
New Results on 0 Production at HERMES
Overview on hard exclusive production at HERMES
& first nucleon tomographic images Michel Guidal (IPN Orsay)
Exclusive production at HERMES
Transverse distributions of polarized quarks
DVCS and exclusive channels
(from data to GPDs and proton charge radius) Michel Guidal (IPN Orsay)
First results on Deep Virtual Compton Scattering in Hall A
Prospects for Future measurement of GPDs using COMPASS at CERN
Semi-Inclusive DIS measurements at Jefferson Lab
New results on SIDIS SSA from JLab
Deeply Virtual Scattering
The Helicity Structure of the Nucleon from Lepton Nucleon Scattering
Presentation transcript:

Michel Guidal (IPN Orsay) NPQCD2015, 21/04/2015 GPD phenomenology Michel Guidal (IPN Orsay)

y x z ep a eX (DIS) (Parton Distribution Functions: PDF)

ep a eX (DIS) ep a ep (elastic) y z (Parton Distribution x Functions: PDF) y x z ep a ep (elastic) (Form Factors: FFs)

ep a eX (DIS) ep a ep (elastic) ep a epg (DVCS) y z (Parton Distribution Functions: PDF) y x z ep a ep (elastic) (Form Factors: FFs) x z ep a epg (DVCS)

ep a eX (DIS) ep a ep (elastic) ep a epg (DVCS) ep a epX (SIDIS) y z (Parton Distribution Functions: PDF) y x z ep a ep (elastic) (Form Factors: FFs) x z ep a epg (DVCS) (Generalized Parton Distributions: GPDs) ep a epX (SIDIS) z (Transverse Momentum Dependent PDFs: TMDs) x

In the light-cone frame: x+x : relative longitudinal momentum of initial quark x-x : relative longitudinal momentum of final quark t=D2 : total squared momentum transfer to the nucleon (transverse component: )

p p’ p p’ p p’ GPDs probe the nucleon at amplitude level DIS : DVCS : x x x+x x-x p p’ p p’ q(x)~<p|F(x)OF(x)|p ’> H(x,x)~<p|F(x-x)OF(x+x)|p ’> p p’ x+x x-x z 1 x<x : x>x :

(x,x ) dependence : Double Distributions (Radyushkin) Hq(x,x,0)~ db da d(x-b-ax)DDq(a,b)

(x,x ) dependence : Double Distributions (Radyushkin) 22b+1G(2b+1)(1-|b|)2b+1 Hq(x,x,0)~ db da d(x-b-ax)DDq(a,b) With : and DDq(a,b,t)=hb(a,b) q(b) hb(a,b)=G(2b+2)[(1-|b|)2-a2]b

(x,x,t ) dependence : Reggeized Double Distributions (Radyushkin, Muller, Polyakov,VdH, M.G.) DDq(a,b,t)=q (b) hb(a,b)b-a’(1-b)t x b (GeV-1) Hu(x,b ) y z Satisfies Form Factors sum rule and polynomiality

proton electromagnetic form factors HqDD(x,0,t) q(x) x-a’1(1-x)t EqDD(x,0,t) q(x)(1-x)hqx-a’2(1-x)t

DVCS data (until a few weeks ago) JLab Hall A DVCS B-pol. X-section DVCS unpol. X-section JLab CLAS DVCS BSA DVCS lTSA HERMES DVCS BSA,lTSA,tTSA,BCA

In general, 8 GPD quantities accessible (Compton Form Factors) with

Given the well-established LT-LO DVCS+BH amplitude Bethe-Heitler GPDs Can one recover the 8 CFFs from the DVCS observables? Obs= Amp(DVCS+BH) CFFs Two (quasi-) model-independent approaches to extract, at fixed xB, t and Q2 (« local » fitting), the CFFs from the DVCS observables

1/ «Brute force » fitting c2 minimization (with MINUIT + MINOS) of the available DVCS observables at a given xB, t and Q2 point by varying the CFFs within a limited hyper-space (e.g. 5xVGG) The problem can be (largely) underconstrained: JLab Hall A: pol. and unpol. X-sections JLab CLAS: BSA + TSA 2 constraints and 8 parameters ! However, as some observables are largely dominated by a single or a few CFFs, there is a convergence (i.e. a well-defined minimum c2) for these latter CFFs. The contribution of the non-converging CFF enters in the error bar of the converging ones. For instance (naive): If -10<x<10:

1/ «Brute force » fitting c2 minimization (with MINUIT + MINOS) of the available DVCS observables at a given xB, t and Q2 point by varying the CFFs within a limited hyper-space (e.g. 5xVGG) The problem can be (largely) underconstrained: JLab Hall A: pol. and unpol. X-sections JLab CLAS: BSA + TSA 2 constraints and 8 parameters ! However, as some observables are largely dominated by a single or a few CFFs, there is a convergence (i.e. a well-defined minimum c2) for these latter CFFs. The contribution of the non-converging CFF enters in the error bar of the converging ones. M.G. EPJA 37 (2008) 319 M.G. & H. Moutarde, EPJA 42 (2009) 71 M.G. PLB 689 (2010) 156 M.G. PLB 693 (2010) 17

2/ Mapping and linearization If enough observables measured, one has a system of 8 equations with 8 unknowns Given reasonable approximations (leading-twist dominance, neglect of some 1/Q2 terms,...), the system can be linear (practical for the error propagation) ~ DsLU ~ sinf Im{F1H + x(F1+F2)H -kF2E}df ~ ~ DsUL ~ sinfIm{F1H+x(F1+F2)(H + xB/2E) –xkF2 E+…}df K. Kumericki, D. Mueller, M. Murray, arXiv:1301.1230 hep-ph, arXiv:1302.7308 hep-ph

Other approaches: Assume a functionnal shape and fit some parameters *D. Mueller & K. Kumericki *H. Moutarde *VGG by the HERMES and n-DVCS Hall A coll. Les 2 precedentes methodes sont « quasi » independantes de modele, i.e. elles ne necessitent pas de supposer une forme fonctionelle avec des parametres a fitter. Les methodes qui sont sur ce slide supposent que les GPDs ont déjà une forme particuliere.

Hall A : s & DsLU , xB=0.36,Q2=2.3,t=.17,.23,.28,.33 c2=1.01 c2=0.92

unpol.sec.eff. + beam pol.sec.eff. c2 minimization Avec « ma » methode, extraction obtenue pour Him en fittant les sec.eff. (pol. et non-pol.) du Hall A c2 minimization

unpol.sec.eff. + beam pol.sec.eff. beam spin asym. + long. pol. tar. asym Avec « ma » methode, extraction obtenue pour Him en fittant les BSA et les TSA (Shifeng) de CLAS c2 minimization

unpol.sec.eff. + beam pol.sec.eff. beam spin asym. + long. pol. tar. asym beam charge asym. + beam spin asym … Avec la methode de KM et la mienne, extraction obtenue pour Him en fittant les asymetries d’HERMES. c2 minimization linearization

unpol.sec.eff. + beam pol.sec.eff. beam spin asym. + long. pol. tar. asym beam charge asym. + beam spin asym … Compilation de toutes les methodes c2 minimization linearization Moutarde 10 model/fit VGG model KM10 model/fit

the t-slope reflects the size of the probed object (Fourier transf.) HIm: (~H(x,x,t) ) the t-slope reflects the size of the probed object (Fourier transf.) Resultats pour HtildeIm The sea quarks (low x) spread to the periphery of the nucleon while the valence quarks (large x) remain in the center

Resultats pour HtildeIm ~ The axial charge (~Him) appears to be more « concentrated » than the electromagnetic charge (~Him)

From CFFs to spatial densities How to go from momentum coordinates (t) to space-time coordinates (b) ? (with error propagation) Burkardt (2000) Applying a (model-dependent) “deskewing” factor: and, in a first approach, neglecting the sea contribution

} 1/Smear the data according to their error bar 2/Fit by Aebt 3/Fourier transform (analytically) 4/Obtain a series of Fourier transform as a function of b 5/For each slice in b, obtain a (Gaussian) distribution which is fitted so as to extract the mean and the standard deviation ~1000 times

CLAS data (xB=0.25) “skewed” HIm “deskewed” HIm (fits applied to « deskewed » data) “deskewed” HIm

HERMES data (xB=0.09) “skewed” HIm “deskewed” HIm (fits applied to « deskewed » data) “deskewed” HIm

xB=0.25 xB=0.09

GPDs contain a wealth of information on nucleon structure and dynamics: space-momentum quark correlation, orbital momentum, pion cloud, pressure forces within the nucleon,…

GPDs contain a wealth of information on nucleon structure and dynamics: space-momentum quark correlation, orbital momentum, pion cloud, pressure forces within the nucleon,… Many more DVCS data coming with JLab 6 GeV: Cross sections on p, BSA for DVCS on He4,…

To be published in 2015, on ArXiv CLAS (courtesy H.S. Jo) To be published in 2015, on ArXiv

GPDs contain a wealth of information on nucleon structure and dynamics: space-momentum quark correlation, orbital momentum, pion cloud, pressure forces within the nucleon,… Many more DVCS data coming with JLab 6 GeV: Cross sections on p, BSA for DVCS on He4,… DVMP data also provide access to GPDs: PS mesons transversity GPDs,… First new insights on nucleon structure already emerging from current data with new fitting algorithms Large flow of new observables and data expected soon (JLab6,JLab12,COMPASS) will allow a precise nucleon tomography in the valence region (Other DVCS-related processes planned for JLab 12 GeV (TCS, DDVCS) Theory developments: higher twists, target mass corrections, NLO corrections, …

Double beam-target spin asym. Long. target spin asym. Double beam-target spin asym. CLAS (courtesy S. Niccolai) To be published in 2014

Mass corrections in propagators – In lightcone frame, q and P collinear along z-axis using lightcone vectors pµ, nµ along + and – z direction and ξ and ξ' = + component of ∆ and q ~ ~ ~ – Kinematical variables: experimentaly accessible Light-cone momentum fraction, include mass terms At asymptotic limit:

Gauge invariance correction We have: qµHµνLO = ½ (∆⊥)κHκνLO and q'νHµνLO = – ½ (∆⊥)λHκλLO Restore gauge invariance: qµHµν = qνHµν ≡ 0 twist 2 vector part

Hard scattering amplitude of TCS - - - - - -

1) The HERMES Recoil detector. A. Airapetian et al, e-Print: arXiv:1302.6092 2) Beam-helicity asymmetry arising from deeply virtual Compton scattering measured with kinematically complete event reconstruction A. Airapetian et al, JHEP10(2012)042 3) Beam-helicity and beam-charge asymmetries associated with deeply virtual Compton scattering on the unpolarised proton A. Airapetian et al, JHEP 07 (2012) 032 Many analysis at JLab in progress (CLAS X-sections and lTSA, new Hall A X-sections at different beam energies, proton and neutron channels,… with publications planned for 2013/2014

HIm:the t-slope reflects the size of the probed object (Fourier transf The sea quarks (low x) spread to the periphery of the nucleon while the valence quarks (large x) remain in the center

~ The axial charge (~Him) appears to be more « concentrated » than the electromagnetic charge (~Him)

~ New A_UL and A_LL CLAS data Confirms the apparent Phys.Rev. D91 (2015) 5, 052014 Les nouvelles donnees de CLAS pour A_UL et A_LL. Confirms the apparent « xB-independence » and flatter « t-dependence » of HIm ~

~ Im{Hp, Hp, Ep} ~ ~ Im{Hp, Hp} Re{Hp, Hp} Im{Hp, Ep} f g e’ e N’ leptonic plane hadronic plane N’ e’ e x= xB/(2-xB) k=-t/4M2 DsLU ~ sinf Im{F1H + x(F1+F2)H -kF2E}df ~ Polarized beam, unpolarized target (BSA) : Im{Hp, Hp, Ep} Unpolarized beam, longitudinal target (lTSA) : DsUL ~ sinfIm{F1H+x(F1+F2)(H + xB/2E) –xkF2 E+…}df ~ Im{Hp, Hp} nDVCS complements pDVCS for the different sensitivity to GPDs of the various observables Polarized beam, longitudinal target (BlTSA) : DsLL ~ (A+Bcosf)Re{F1H+x(F1+F2)(H + xB/2E)…}df ~ Re{Hp, Hp} Unpolarized beam, transverse target (tTSA) : DsUT ~ cosfIm{k(F2H – F1E) + ….. }df Im{Hp, Ep}