(g, n) (g, p) experiment at SAMURAI

Slides:



Advertisements
Similar presentations
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
Advertisements

E1 Strength distribution of halo nuclei observed via the Coulomb breakup Takashi Nakamura Tokyo Institute of Technology Workshop on Statistical Nuclear.
Invariant-mass spectroscopy of neutron halo nuclei Takashi Nakamura 中村隆司 Tokyo Institute of Technology 東京工業大学 中日 NP 06, Shanghai.
Spectroscopy at the Particle Threshold H. Lenske 1.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
Bordeaux Meeting June 6-7th, 2005 Meeting starts at 2:30 pm, Monday June 6th 1)Summary of EURONS meeting (February 2005, Madeira) 2)Discussion of ACTAR.
Scint. Al Internal reflection External reflection ↑ ↑ ↑ Decay Detector Development for Giant Resonance Studies By: Gus Olson Mentor: Dr. D.H.Youngblood.
Detecting Giant Monopole Resonances Peter Nguyen Advisors: Dr. Youngblood, Dr. Lui Texas A&M University Energy Loss Identifying The Particles Discovered.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Direct Reactions at Eurisol In the light of the TIARA+MUST2 campaign at GANIL B. Fernández-Domínguez.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Detecting Giant Monopole Resonances Peter Nguyen Advisors: Dr. Youngblood, Dr. Lui Texas A&M University.
A New Spectrometer in RIBF -- SAMURAI -- Ken-ichiro YONEDA RIKEN Nishina Center Carpathian Summer School 2012, June 24 – July 7, 2012.
ExternalTargetFacility at CSR FRIB-China East Lansing Sun, Zhiyu Institute of Modern Physics, CAS.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Spin-isospin studies with the SHARAQ Spectrometer Tomohiro Uesaka & Y. Sasamoto, K. Miki, S. Noji University of Tokyo for the SHARAQ collaboration Aizu2010.
LENS-CAL I. Barabanov, V. Gurentsov, V. Kornoukhov Institute for Nuclear Research, Moscow and R. S. Raghavan, Virginia Tech LONU-LENS Blacksburg, Oct 15,
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
1 Reaction Mechanisms with low energy RIBs: limits and perspectives Alessia Di Pietro INFN-Laboratori Nazionali del Sud.
Sep. 2003CNS Summer School Feb 分 => Talk なら 35 枚だが、 lecture だと少なめ? 50 分 => Talk なら 35 枚だが、 lecture だと少なめ?
Coulomb dissociation for astrophysics T. Gomi (RIKEN) 22Mg(p,γ)23Al
Where next (with HDU)? Q-value mass. excitation energies. Angular distributions of recoils l -value spectroscopic information.
Nuclear structure and fundamental interactions Solid state physics Material irradiation Micrometeorite research and study Astrophysics Nuclear astrophysics.
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Fusion of light halo nuclei
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Coulomb breakup of 22 C and 31 Ne N. Kobayashi Department of Physics, Tokyo Institute of Technology.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
SAMURAI Si Detector M. Kurokawa a), H. Baba a), T. Gunji b), H. Hamagaki b), S. Hayashi b),T. Motobayashi a), H. Murakami a), A. Taketani a), M. Tanaka.
SAMURAI magnet Hiromi SATO SAMURAI Team, RIKEN Requirements Geometry Magnetic field Superconducting coil and cooling system Present status of construction.
Focal plane detector discussion Kwangbok Lee Low Energy Nuclear Science team Rare Isotope Science Project Institute for Basic Science July 11,
STATUS REPORT ON THE “MASHA” SET-UP A.M.Rodin, A.V.Belozerov, S.N.Dmitriev, Yu.Ts.Oganessian, R.N.Sagaidak, V.S.Salamatin, S.V.Stepantsov, D.V.Vanin PAC.
CAEN GET Collaboration Meeting Tetsuya MURAKAMI. Program.
Overview of RIBF H. Sakurai RIKEN Nishina Center.
Overview of SAMURAI Project
The RIKEN RI Beam Factory
Nuclear Reaction Studies for Explosive Nuclear Astrophysics
Wide Dynamic range readout preamplifier for Silicon Strip Sensor
Study of Hypernuclei with Heavy Ion Beams (HypHI) at GSI Shizu Minami GSI, Germany on behalf of HypHI collaboration Introduction Phase 0 experiment R.
Resonances in the 12C(α,γ)16O reaction
the s process: messages from stellar He burning
L. Acosta1, M. A. G. Álvarez2, M. V. Andrés2, C. Angulo3, M. J. G
Giant Monopole Resonance
Event Reconstruction and Data Analysis in R3BRoot Framework
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Decay spectroscopy with LaBr3(Ce) detectors at RIKEN and GSI
Search for unbound excited states of proton rich nuclei
DSSSD for b decay investigations of heavy neutron-rich isotopes
Nucleosynthesis 12 C(
Neutron Detection with MoNA LISA
SAMURAI Si detector Requirements overview
Breakup reactions of one-neutron halo nucleus 31Ne
News Physics Colloquium at 4:30 pm, today at Room 216-1
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
Naohito Iwasa Dept. Phys., Tohoku Univ.
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Recent Highlights and Future Plans at VAMOS
Elastic alpha scattering experiments
Direct Measurement of the 8Li + d reactions of astrophysical interest
Yasuhiro Togano Rikkyo University
CNS Active Targets for Missing Mass Spectroscopy with RI beams Tomohiro Uesaka CNS, University of Tokyo ・ Missing Mass Spectroscopy ・ Two different.
Coincidence measurement of heavy ion and protons with SAMURAI
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Probing correlations by use of two-nucleon removal
Presentation transcript:

(g, n) (g, p) experiment at SAMURAI RIKEN Nishina Center Ken-ichiro YONEDA 22 Dec, 2009 Detector Workshop for RIBF experiments

SAMURAI (Superconducting Analyser for MUlti-particles with Radio-Isotope beams) Spectroscopy of Unbound States e.g. (g,n) (p,2p) Missing Mass Nucl. Astrophys. (p,g) Deuteron expts for 3NF Nucl. Matter Bending Magnet Superconducting Large B・L (7Tm) Large pole gap (80cm) Weight ~ 600 ton Neutron Tokyo Tech. Group (Prof. Nakamura) in charge d setup TPC Heavy Ion (not shown in picture) Proton (not shown in picture)

Invariant Mass Method 12Be 14Be 14Be* n n 12C target 2+ Erel Ex 12Be+n+n S2n=1.26(13)MeV 0+ Scattering angle q T.Sugimoto et al.PLB654,160(2007). 3

Coulomb Breakup Inelastic Scattering 19C+p→18C+n+X 17C+p→17C+n+X 11Li+Pb→9Li+n+n+X T.Nakamura et al., PRL 96, 252502 (2006) Y.Satou,TN et al., PLB 660, 320 (2008).

Physics of Neutron-rich Nuclei via Invariant Mass Method (@SAMURAI/NEBULA) Structures and reactions of r-process nuclei Giant and Pigmy resonances of Neutron-skin nuclei Neutron Star/Nuclear Matter 82 r-process 126 50 82 28 20 50 Drip-Line Physics Giant Halos? 2n, 4n-correlation? New Cluster/Molecular States? States beyond drip-lines? (4n,28O, and more) 8 28 20 2 8 2

NEBULA Typical Setup Detectors: To be installed in the vertical direction To cover more acceptance in the horizontal direction 1.8m (12cm thick x 2 layers) X 4 Walls 3.6m

NEBULA Modules Neutron Detector Module Veto Detector Module 32cm 12cm Plastic Scintillator (BC408) 12cm(H)x180cm(H)x12cm(D) Coupled to 2 PMT’s (HAMAMATSU R7724ASSY) Veto Detector Module Plastic Scintillator (BC408) 32cm(H) x 190cm(H) x 1cm(D) Coupled to 2 PMT’s (HAMAMATSU R7724ASSY) 180cm 190cm VETO Module Neutron Module

Typical Setups of NEBULA 1n + core fragment 1-stack configuration 4n + core fragment 4-stack configuration 3.6m ~1m gap 10 m @250MeV/u

Acceptance 2n acceptance 1n acceptance Acceptance is dictated by neutron Basic setup Horizontal -10deg~+10deg, Vertiacl -5deg~+5deg 1n acceptance 1n acceptance 2n acceptance Smooth dependence and sufficient acceptance up to Erel=10MeV(40%) 2n acceptance has nearly identical E-dependence to that of 1n acceptance

Intrinsic efficiency for neutron Estimation of Resolution 96cm 48cm 12cmx12cm dimension is o.k. In terms of the energy resolution Thickness: 96cm  ~66% (Thickness of 2m does not enhance the efficiency very much) Current (Half is funded)~40%

Current Status and Schedule Half the neutron detector modules(120) +Full Veto Modules (48) are funded 1n efficiency~40%, 2n efficiency ~10% (170 M JPY ~1.6M USD, 1MJPY/1module) For the funded part, Plastic Scintillators+PMT’s are available by the end of March 2010 (Modules for 1Layer already installed) Electronics modules are available by the middle of 2011

Reaction Study for Nuclear Astrophysics Very hot dense enviroment particle capture b decay occurs sequentially Important to understand Natural abundance Ongoing nucleosynthesis from cosmic g-rays Energy production in stars ….. { Ne nova M.Wiescher et.al. Phil. Trans. R. Soc. Lond. (1998)

Nuclear Astrophysics Studies with Radioactive Isotope Radioactive Isotopes are included Short-life nuclei – hard to study Structure theories are used – not always valid change of shell structure, shape,…  Experimental information is desired Recent development of RI beams In-flight fragmentation (fission)  providing great opportunities to study short-life RI reactions

Coulomb Breakup Reaction -- Inverse of (p,g) reaction -- 22Mg 23Al* 23Al γ p Incident beam 22Mg + p 23Al High-Z target (Pb) 22Mg(p,g)23Al 23Al(g,p)22Mg 26Si(p,g)27P 27P(g,p)26Si s ~ 60nb s ~ 4mb Inverse reaction Cross section far larger Detailed valance + virtual photons

Experimental setup - Detectors for Heavy Ion and proton - 22Mg Energy Angle Heavy Ion Proton of Invariant mass, Relative energy spectrum

Relative Energy Spectrum - 23Al  22Mg + p - 1st excited state (objective state) Higher excited state continuum component: E1 , constant astrophysical S -factor Counts /150keV 1000 2000 3000 4000 Relative energy [keV] ・ energy resolution 170 keV (Erel = 400 keV) ・ identify reaction through the first excited state clearly.

Cross sections - 23Al  22Mg + p - Coulomb + Nuclear l = 2 23Al 22Mg P 23Al * l = 1 “βC” = “βN” Small “Nuclear” component : 8 % l = 2 distorted-wave calculation optical potential : 17O+208Pb (84AMeV) collective (vibrational) model Coulomb ONLY Coulomb + Nuclear Coulomb and nuclear response is considered as same deformation parameter. Nuclear ONLY = (7.0 ±1.3) × 10-7 eV Compatible with the predicted value by J.A. Caggiano et.al. Phys. Rev. C 64 (2001) 025802. 5.49×10-7 eV

Competition with b decay Nucleosynthesis in explosive hydrogen burning (Novae, X-ray bursts) 0.1 0.2 0.5 1.0 2.0 T [GK] 106 104 102 100 ρ [g/cm3] Which? Nova Model M1 : J.Jose et al Astrophys. J. 520 347 (1999) M2 : C. Iliadis et.al. Astrophys. J. Supp. 142 105 (2002) Cosmic γ-emitter Ne nova M.Wiescher et.al. Phil. Trans. R. Soc. Lond. (1998) βdecay is favored

さらに重い領域へ Requirements 重い領域へ展開したい ・ 重い不安定核の生成 ・ 実験の分解能の向上   rp-process の waiting point となりうる所での反応レート   p-nuclei の起源、天然存在比の理解 Requirements ・ 重い不安定核の生成 RIPS  RIBF + BigRIPS ・ 実験の分解能の向上 Silicon Telescope SAMURAI spectrometer resolution ~ 1/700 up to 100Sn Thielemann et al., Prog. Part. Nucl. Phys. 46 (2001) 5.

PI, momentum of Heavy ion low resolution mode high resolution mode PI, momentum of Heavy ion PI, momentum of proton(s) Strip Silicon Detectors emission angles of products Strip Silicon Detectors Simultaneous detection of HI and p (sometimes 2p) Small multiple scattering effect Position measurement for relative angle

Silicon Strip detectors for proton breakup at SAMURAI HEAVY ION A/Z ~ 2 Developments Required Broad Dynamic Range Both proton & HI (Z<50) hit the detector Low-noize (non-linear?) Preamplifier Low-noize circuit board & wire bonding Capability of high density signal processing signals of about 2500 ch in total Modify integrated ASD circuit HINP16C in collaboration with Texas A&M and Washington Univ. in St. Louis HINP16C – 16ch processing in 1 chip two output for energy and timing PROTON Silicon Strip (x, y, (diag)) x2 HPK “GLAST” silicon 87mm x 87mm, 228 mm strip RI Beam e.g. 64Ge  NEXT Talk by Kurokawa san for more technical details T. Ohsugi et al., NIM A541 (2005) 29

Summary (gamma, n) experiment (gamma, p) experiment Invariant mass spectroscopy of neutron-rich isotopes NEBULA detector 40% efficiency (Full volume), 100% coverage up to Erel ~ 3MeV Half volume ready in March 2010 (gamma, p) experiment Mainly for nuclear astrophysics interests Silicon strip detector Readout requires 1:5000 dynamic range 2500 ch high dense signal prosessing  NEXT Kurokawa san’s talk