Using Proportional Relationships

Slides:



Advertisements
Similar presentations
Lesson 6.5 Scale Drawings Students will be able to understand ratios and proportions in scale drawings.
Advertisements

Applications of Proportions
Warm Up Convert each measurement ft 3 in. to inches
Applications of Proportions
11.3 Warm Up Warm Up Lesson Quiz Lesson Quiz Lesson Presentation Lesson Presentation Perimeter and Area of Similar Figures.
7.5-Using Proportional Relationships
CHAPTER 7.5.  Indirect measurement is any method that uses formulas, similar figures, and/or proportions to measure an object. The following example.
Example 1: Measurement Application
Find the length of each segment WARM-UP SR = 25, ST = 15.
5-7 Indirect Measurement Warm Up Problem of the Day
Using Proportional Relationships
Using Proportional Relationships
Geometry H2 (Holt 7-5)K. Santos.  Tyler wants to find the height of a telephone pole. He measured the pole’s shadow and his own shadow. What is the height.
Holt CA Course Using Similar Figures Warm Up Solve each proportion. 1. k4k4 = Triangles JNZ and KOA are similar. Identify the side.
Warm Up Solve each proportion AB = 16 QR = 10.5 x = 21.
Warm Up Convert each measurement ft 3 in. to inches
Using Proportional Relationships
Holt Geometry 7-5 Using Proportional Relationships 7-5 Using Proportional Relationships Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation.
§7.5, Using Proportional Relationships
Presentation – Six Lessons
Holt McDougal Geometry 7-5 Using Proportional Relationships 7-5 Using Proportional Relationships Holt Geometry Warm Up Warm Up Lesson Presentation Lesson.
Holt Geometry 7-5 Using Proportional Relationships Warm Up Convert each measurement ft 3 in. to inches 2. 5 m 38 cm to centimeters Find the perimeter.
Holt CA Course Using Similar Figures Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
Holt Geometry 7-5 Using Proportional Relationships Warm Up Convert each measurement ft 3 in. to inches 2. 5 m 38 cm to centimeters Find the perimeter.
Holt McDougal Geometry 7-5 Using Proportional Relationships Warm Up Convert each measurement ft 3 in. to inches 2. 5 m 38 cm to centimeters Find.
WARM UP Convert each measurement ft 3 in. to inches 2. 5 m 38 cm to centimeters Find the perimeter and area of each polygon. 3. square with side.
Holt CA Course Using Similar Figures Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
Warm Up Convert each measurement ft 3 in. to inches
10-4 Perimeter and Area in the Coordinate Plane Warm Up
Warm Up Convert each measurement ft 3 in. to inches
Applications of Proportions
Applying Properties of Similar Triangles
5-6 to 5-7 Using Similar Figures
5-7 Indirect Measurement Warm Up Problem of the Day
Objectives Use ratios to make indirect measurements.
Using Proportional Relationships
Using Proportional Relationships
Applications of Proportions
Using Proportional Relationships
Using Proportional Relationships
Objectives Students will learn how to use Proportional Relationships to find missing segment lengths.
Applications of Proportions
BASIC GEOMETRY Section 7.5: Using Proportional Relationships
Using Similar Figures to Find Missing Lengths
EXAMPLE 3 Use a ratio of areas Cooking
7-1 Ratio and Proportion Warm Up Lesson Presentation Lesson Quiz
Applications of Proportions
7-1 Ratio and Proportion Warm Up Lesson Presentation Lesson Quiz
Using Proportional Relationships
LEARNING GOALS – LESSON 7:5
7-5 Vocabulary Indirect measurement Scale drawing scale.
Using Similar Figures to Find Missing Lengths
Objectives Use ratios to make indirect measurements.
Warm Up 1. If ∆QRS  ∆ZYX, identify the pairs of congruent angles and the pairs of congruent sides. Solve each proportion Q  Z; R 
Applications of Proportions
Applications of Proportions
LT 7.6: Use Proportional Relationships to Solve Problems
Using Proportional Relationships
AIM 7-5: How can we use ratios to make indirect measurements?
Using Proportional Relationships
Using Proportional Relationships
Using Proportional Relationships
Applications of Proportions
7-5 Using proportional relationships
Applications of Proportions
Applications of Proportions
Applications of Proportions
Using Proportional Relationships
Presentation transcript:

Using Proportional Relationships 7-5 Using Proportional Relationships Warm Up Lesson Presentation Lesson Quiz Holt McDougal Geometry Holt Geometry

Warm Up Convert each measurement. 1. 6 ft 3 in. to inches 2. 5 m 38 cm to centimeters Find the perimeter and area of each polygon. 3. square with side length 13 cm 4. rectangle with length 5.8 m and width 2.5 m 75 in. 538 cm P = 52 cm, A =169 cm2 P =16.6 m, A = 14.5 m2

Objectives Use ratios to make indirect measurements. Use scale drawings to solve problems.

Vocabulary indirect measurement scale drawing scale

Indirect measurement is any method that uses formulas, similar figures, and/or proportions to measure an object. The following example shows one indirect measurement technique.

Whenever dimensions are given in both feet and inches, you must convert them to either feet or inches before doing any calculations. Helpful Hint

Example 1: Measurement Application Tyler wants to find the height of a telephone pole. He measured the pole’s shadow and his own shadow and then made a diagram. What is the height h of the pole?

Example 1 Continued Step 1 Convert the measurements to inches. AB = 7 ft 8 in. = (7  12) in. + 8 in. = 92 in. BC = 5 ft 9 in. = (5  12) in. + 9 in. = 69 in. FG = 38 ft 4 in. = (38  12) in. + 4 in. = 460 in. Step 2 Find similar triangles. Because the sun’s rays are parallel, A  F. Therefore ∆ABC ~ ∆FGH by AA ~.

Example 1 Continued Step 3 Find h. Corr. sides are proportional. Substitute 69 for BC, h for GH, 92 for AB, and 460 for FG. 92h = 69  460 Cross Products Prop. h = 345 Divide both sides by 92. The height h of the pole is 345 inches, or 28 feet 9 inches.

A scale drawing represents an object as smaller than or larger than its actual size. The drawing’s scale is the ratio of any length in the drawing to the corresponding actual length. For example, on a map with a scale of 1 cm : 1500 m, one centimeter on the map represents 1500 m in actual distance.

A proportion may compare measurements that have different units. Remember!

Example 2: Solving for a Dimension On a Wisconsin road map, Kristin measured a distance of 11 in. from Madison to Wausau. The scale of this map is 1inch:13 miles. What is the actual distance between Madison and Wausau to the nearest mile?

Example 2 Continued To find the actual distance x write a proportion comparing the map distance to the actual distance. Cross Products Prop. Simplify. x  145 The actual distance is 145 miles, to the nearest mile.

Example 3: Making a Scale Drawing Lady Liberty holds a tablet in her left hand. The tablet is 7.19 m long and 4.14 m wide. If you made a scale drawing using the scale 1 cm:0.75 m, what would be the dimensions to the nearest tenth?

Example 3 Continued Set up proportions to find the length l and width w of the scale drawing. 0.75w = 4.14 w  5.5 cm 9.6 cm 5.5 cm

Example 4: Using Ratios to Find Perimeters and Areas Given that ∆LMN:∆QRT, find the perimeter P and area A of ∆QRS. The similarity ratio of ∆LMN to ∆QRS is By the Proportional Perimeters and Areas Theorem, the ratio of the triangles’ perimeters is also , and the ratio of the triangles’ areas is

Example 4 Continued Perimeter Area 13P = 36(9.1) 132A = (9.1)2(60) P = 25.2 A = 29.4 cm2 The perimeter of ∆QRS is 25.2 cm, and the area is 29.4 cm2.