Mohr’s circle for plane stress

Slides:



Advertisements
Similar presentations
BENDING MOMENTS AND SHEARING FORCES IN BEAMS
Advertisements

Mechanics of Materials – MAE 243 (Section 002) Spring 2008
Chapter Outline Shigley’s Mechanical Engineering Design.
Hamrock Fundamentals of Machine Elements Chapter 2: Load, Stress and Strain The careful text-books measure (Let all who build beware!) The load, the shock,
PLANE STRAIN TRANSFORMATION
PLANE STRESS TRANSFORMATION
Copyright © 2011 Pearson Education South Asia Pte Ltd
Principle and Maximum Shearing Stresses ( )
Analysis of Stress and Strain
Mechanics of Materials – MAE 243 (Section 002) Spring 2008 Dr. Konstantinos A. Sierros.
Analysis of Stress and Strain Review: - Axially loaded Bar - Torsional shaft Questions: (1) Is there any general method to determine stresses on any arbitrary.
Mohr's Circle - Application
Professor Joe Greene CSU, CHICO
Stress Transformation
ENGR 220 Section
GLG310 Structural Geology. 16 July 2015GLG310 Structural Geology.
Mechanics of Materials(ME-294)
Forces Due to Static Fluid
Load and Stress Analysis
Transformations of Stress and Strain
APPLICATIONS/ MOHR’S CIRCLE
10.7 Moments of Inertia for an Area about Inclined Axes
In general stress in a material can be defined by three normal stresses and three shear stresses. For many cases we can simplify to three stress components.
Mechanics of Materials – MAE 243 (Section 002) Spring 2008 Dr. Konstantinos A. Sierros.
Problem For the 5 x 3 x -in. angle cross
Introduction Stress: When some external system of forces act on a body, the internal forces are set up at various sections of the body, which resist the.
CHAPTER OBJECTIVES To show how to transform the stress components that are associated with a particular coordinate system into components associated with.
Triaxial State of Stress at any Critical Point in a Loaded Body
Transformations of Stress and Strain
ME16A: CHAPTER FOUR ANALYSIS OF STRESSES IN TWO DIMENSIONS.
1 INTRODUCTION The state of stress on any plane in a strained body is said to be ‘Compound Stress’, if, both Normal and Shear stresses are acting on.
1 Structural Geology Force and Stress - Mohr Diagrams, Mean and Deviatoric Stress, and the Stress Tensor Lecture 6 – Spring 2016.
MOHR'S CIRCLE The formulas developed in the preceding article may be used for any case of plane stress. A visual interpretation of them, devised by the.
CHAPTER OBJECTIVES Derive equations for transforming stress components between coordinate systems of different orientation Use derived equations to.
6. Strain Assoc.Prof.Dr. Ahmet Zafer Şenalp Mechanical Engineering Department Gebze Technical University.
GLG310 Structural Geology. 18 March 2016GLG310 Structural Geology.
Transformation methods - Examples
Principal Stresses and Strain and Theories of Failure
1 CHAPTER 2C- Mohr’s Circle Dr. Zuhailawati Hussain EBB 334 Mechanical Metallurgy.
Principal Stresses in Beams
EAG 345 – GEOTECHNICAL ANALYSIS
1. PLANE–STRESS TRANSFORMATION
DEPARTMENT OF MECHANICAL AND MANUFACTURING ENGINEERING
Copyright © Cengage Learning. All rights reserved.
Chapter 7 Transformations of Stress and Strain.
Stress in any direction
Distributed Forces: Moments of Inertia
Part- I {Conic Sections}
HW # , ,64 , ,38 , Row 3 Do Now Find a set of parametric equations to represent the graph of y = -2x + 1 using the.
STRESS STATE 2- D.
Transformations of Stress and Strain
From: The Shape of Helically Creased Cylinders
Distributed Forces: Moments of Inertia
Transformations of Stress and Strain
CTC / MTC 222 Strength of Materials
3 Torsion.
CHAPTER OBJECTIVES Derive equations for transforming stress components between coordinate systems of different orientation Use derived equations to.
BDA30303 Solid Mechanics II.
3 Torsion.
Example 7.01 SOLUTION: Find the element orientation for the principal stresses from Determine the principal stresses from Fig For the state of plane.
ENGINEERING MECHANICS
ENGINEERING MECHANICS
Strain Transformation
Part- I {Conic Sections}
Part- I {Conic Sections}
Mechanics of Materials ENGR Lecture 19 Mohr’s Circle
Mechanics of Materials Engr Lecture 18 - Principal Stresses and Maximum Shear Stress Totally False.
Mechanics of Materials Engr Lecture 20 More Mohr’s Circles
Copyright ©2014 Pearson Education, All Rights Reserved
Copyright ©2014 Pearson Education, All Rights Reserved
Presentation transcript:

Mohr’s circle for plane stress The transformation equations for plane stress can be represented in graphical form by a plot known as Mohr’s circle This graphical representation is extremely useful because it enables you to visualize the relationships between the normal and shear stresses acting on various inclined planes at a point in a stressed body Using Mohr’s circle you can also calculate principal stresses, maximum shear stresses and stresses on inclined planes Mohr’s circle is also valid for strains and moments of inertia * Mohr’s circle is named after the famous German civil engineer Otto Christian Mohr (1835-1918), who developed the circle in 1882

Equations of Mohr’s circle The equations of Mohr’s circle can be derived from the transformation equations for plane stress This is the equation of a circle in standard algebraic form. The coordinates are σx1 and τx1y1 the radius is R and the centre of circle has coordinates σx1 = σaver and τx1y1 = 0

Two forms of Mohr’s circle Mohr's circle can be plotted from the previous equations in either of two forms. In the first form of Mohr’s circle, we plot the normal stress σx1 positive to the right and the shear stress τx1y1 positive downward (fig 7-14a). The advantage of plotting shear stress positive downward is that the angle 2θ will be positive when counterclockwise, which agrees with the positive direction of 2θ In the second form of Mohr’s circle, τx1y1 is plotted positive upward but the angle 2θ is now positive clockwise (fig 7-14b), which is opposite to its usual positive direction Both forms of Mohr’s circle can be used. However, it is easier to visualize the orientation of the stress element if the positive direction of the angle 2θ is the same in the Mohr’s circle as it is for the element itself. Therefore, we will choose the first form of Mohr’s circle.

Construction of Mohr’s Circle Mohr’s circle can be constructed in a variety of ways, depending upon which stresses are known and which are to be found Let us assume that we know the stresses σx , σy τxy acting on the x and y planes of an element in plane stress (fig 7-15a) The above information is sufficient to construct the circle Then, with the circle drawn, we can determine the stresses σx1 , σy1 τx1y1 acting on an inclined element (fig 7-15b)

Procedure for constructing Mohr’s Circle Draw a set of coordinate axes with σx1 as abscissa (positive to the right) and τx1y1 as ordinate (positive downward) Locate the center C of the circle at the point having coordinates σx1= σaver and τx1y1=0 (see eqs 7-31a and 7.32)

Procedure for constructing Mohr’s Circle Locate point A, representing the stress conditions on the x face of the element shown in fig 7-15a, by plotting its coordinates σx1=σx and τx1y1=τxy. Note that point A on the circle corresponds to θ=0. Also, note that the x face of the element (fig 7-15a) is labeled ‘A’ to show its correspondence with point A on the circle

Procedure for constructing Mohr’s Circle Locate point B, representing the stress conditions on the y face of the element shown in fig 7-15a, by plotting its coordinates σx1=σy and τx1y1=-τxy. Note that point B on the circle corresponds to θ =90. In addition, the y face of the element (fig 7-15a) is labeled ‘B’ to show its correspondence with point B on the circle

Procedure for constructing Mohr’s Circle Draw a line from point A to point B. This line is a diameter of the circle and passes through the center C. Points A and B, representing the stresses on planes at 90 to each other (fig 7-15a), are at opposite ends of the diameter and therefore are 180 apart on the circle

Procedure for constructing Mohr’s Circle Using point C as the center, draw Mohr’s circle through points A and B. The circle drawn in this manner has radius R (eq. 7-31b).

Example At a point on the surface of a pressurized cylinder, the material is subjected to biaxial stresses σx = 90 MPa and σy = 20 MPa, as shown on the stress element on fig 7-17a. Using Mohr’s circle, determine the stresses acting on an element inclined at an angle θ = 30. (consider only the in-plane stresses, and show the results on a sketch of a properly oriented element.)

Solution Construction of Mohr’s circle. We begin by setting up the axes for the normal and shear stresses with σx1 positive to the right and τx1y1 positive downward. Then we place the center C of the circle on the σx1 axis at the point where the stress equals the average normal stress given by equation 7-31a;

Solution Point A, representing the stresses on the x face of the element (θ=0), has coordinates; σx1 = 90 MPa and τx1y1 = 0 Similarly, the coordinates of point B, representing the stresses on the y face (θ=90), are; σx1 = 20 MPa and τx1y1 = 0

Solution Now we can draw the circle through points A and B with center at C and radius R (using eq. 7-31b) equal to;

Solution Stresses on an element inclined at θ=30. The stresses acting on a plane oriented at an angle θ=30 are given by the coordinates of point D, which is at an angle 2θ=60 from point A (fig 7-17b). By inspection of the circle we see that the coordinates of point D are (using eqs. 7-33a,b);

Solution In a similar manner, we can find the stresses represented by point D’, which corresponds to an angle θ = 120 (or 2θ = 240); Point D’ (using eqs. 7-33a,b);

Solution These results are shown in the figure below on a sketch of an element oriented at an angle θ = 30, with all stresses shown in their true directions. Note that the sum of the normal stresses on the inclined element is equal to σx + σy = (90+20) MPa = 110 MPa