New concept of light ion acceleration from low-density target

Slides:



Advertisements
Similar presentations
Rutherford Appleton Laboratory Three mechanisms interact to cause ion acceleration in PW laser interactions Relativistic electrons expelled by the ponderomotive.
Advertisements

CO 2 laser system M. Polyanskiy, I. Pogorelsky, M. Babzien, and V. Yakimenko.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
0 Relativistic induced transparency and laser propagation in an overdense plasma Su-Ming Weng Theoretical Quantum Electronics (TQE), Technische Universität.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
SENIGALLIA-COULOMB09 1 Protons Acceleration with Laser: influence of pulse duration M. Carrié and E. Lefebvre CEA, DAM, DIF, Arpajon, France A. Flacco.
Charged-particle acceleration in PW laser-plasma interaction X. T. He Institute of Applied Physics and Computational Mathematics, Beijing Present.
Capture, focusing and energy selection of laser driven ion beams using conventional beam elements Morteza Aslaninejad Imperial College 13 December 2012.
西湖国际聚变理论与模拟研讨会 西湖国际聚变理论与模拟研讨会 M. Y. Yu 郁明阳 Institute for Fusion Theory and Simulation Zhejiang University Hangzhou
Charged-particle acceleration in PW laser-plasma interaction
SCT-2012, Novosibirsk, June 8, 2012 SHOCK WAVE PARTICLE ACCELERATION in LASER- PLASMA INTERACTION G.I.Dudnikova, T.V.Leseykina ICT SBRAS.
High-charge energetic electron beam generated in the bubble regime Baifei Shen ( 沈百飞 ) State Key Laboratory of High Field Laser Physics, Shanghai Institute.
Energetic ions from next generation ultraintense ultrashort lasers: scaling laws for TNSA Matteo Passoni 1,2,3, Maurizio Lontano 3, Luca Bertagna 1, Alessandro.
Collisional ionization in the beam body  Just behind the front, by continuity  →0 and the three body recombination  (T e,E) is negligible.
Update on LLNL FI activities on the Titan Laser A.J.Mackinnon Feb 28, 2007 Fusion Science Center Meeting Chicago.
M. S. Tillack, Y. Tao, F. Najmabadi Proposed contributions to Jupiter-III by the laser-matter interactions group Briefing to Prof. Yoshio Ueda 20 November.
Acceleration of a mass limited target by ultra-high intensity laser pulse A.A.Andreev 1, J.Limpouch 2, K.Yu.Platonov 1 J.Psikal 2, Yu.Stolyarov 1 1. ILPh.
Ultra-High-Intensity Laser-Plasma Interactions: Comparing Experimental Results with Three- Dimensional,Fully-Relativistic, Numerical Simultations Donald.
Lecture 3: Laser Wake Field Acceleration (LWFA)
October 19, 2003 Fusion Power Associates Status of Fast Ignition-High Energy Density Physics Joe Kilkenny Director Inertial Fusion Technology General Atomics.
Advanced Biomedical Imaging Dr. Azza Helal A. Prof. of Medical Physics Faculty of Medicine Alexandria University.
Bremsstrahlung Temperature Scaling in Ultra-Intense Laser- Plasma Interactions C. Zulick, B. Hou, J. Nees, A. Maksimchuk, A. Thomas, K. Krushelnick Center.
ENHANCED LASER-DRIVEN PROTON ACCELERATION IN MASS-LIMITED TARGETS
Rainer Hörlein 9/12/ ICUIL 2010 Watkins Glen Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation Rainer Hörlein.
Seeking for combined electron/ion spectrometer in laser ion acceleration experiments Outline  Motivation  Look back: laser driven mass-limited droplet.
Neutron Generation Using Ultra-Intense Laser Plasma Interactions C. Zulick 1, F. Dollar 1, J. Davis 2, V. Chvykov 1, G. Kalintchenko 1, A. Maksimchuk 1,
FACET and beam-driven e-/e+ collider concepts Chengkun Huang (UCLA/LANL) and members of FACET collaboration SciDAC COMPASS all hands meeting 2009 LA-UR.
Dietrich Habs ELI Photonuclear Bucharest, Feb 2, D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik A Laser-Accelerated.
Multi-GeV laser driven proton acceleration in the high current regime Laser-driven acceleration is living a major revolution (PW era)… …but will ever be.
John Collier Science with High Power Lasers. Godfrey Stafford Celebration The Central Laser Facility Prof John Collier Director.
Highlights of talk : 1.e+e- pair laser production 1.Collisionless shocks 1.Colliding laser pulses accelerator.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
Ulsan National Institute of Science and Technology Toward a World-Leading University Y.K KIM.
Classical and quantum electrodynamics e®ects in intense laser pulses Antonino Di Piazza Workshop on Petawatt Lasers at Hard X-Ray Sources Dresden, September.
VARIOUS MECHANISMS OF ELECTRON HEATING AT THE IRRADIATION OF DENSE TARGETS BY A SUPER-INTENSE FEMTOSECOND LASER PULSE Krainov V.P. Moscow Institute of.
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
1 Generation of laser-driven secondary sources and applications Patrizio Antici Istituto Nazionale di Fisica Nucleare Università di Roma “Sapienza”
1. Fast ignition by hydrodynamic flow
UNR activities in FSC Y. Sentoku and T. E. Cowan $40K from FSC to support a graduate student, Brian Chrisman, “Numerical modeling of fast ignition physics”.
Laser acceleration of ion beams M.Chubaryan 1, A.V. Prozorkevich 2, S.A. Smolyansky 2 and I.A. Egorova 2 1 JINR, Dubna 2 Saratov State University.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Trident Laser Facility
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
HHG and attosecond pulses in the relativistic regime Talk by T. Baeva University of Düsseldorf, Germany Based on the work by T. Baeva, S. Gordienko, A.
Rayleigh-Taylor Instability in high energy gain Radiation Pressure ion acceleration Andrea Sgattoni a,b S. Sinigardi c,d, L. Fedeli e,b, F. Pegoraro e,b,
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
Physical Mechanism of the Transverse Instability in the Radiation Pressure Ion Acceleration Process Yang Wan Department of Engineering Physics, Tsinghua.
23. September 2016 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Prof. Dr.-Ing. Thomas Weiland | 1 Laser acceleration.
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
Polarization of final electrons/positrons during multiple Compton
Simulation of laser ion-acceleration and transport
V. Bagnoud PHELIX, Plasma Physics department GSI Darmstadt
The 2nd European Advanced Accelerator Concepts Workshop
Experiments at LCLS wavelength: 0.62 nm (2 keV)
A.P. Potylitsyn, I.S. Tropin Tomsk Polytechnic University,
Interaction of Intense Ultrashort Laser Fields with Xe, Xe+ and Xe++
Studies of the energy transfer
Laboratoire d’Optique Appliquée
Choi Ilwoo1,3 , Nam Changhee1,2
Wakefield Accelerator
TNSA laser driven ion acceleration
All-Optical Injection
L. Obst, S. Göde, M. Rehwald, F. -E. Brack, J. Branco, S. Bock, M
Peking University: Jinqing Yu, Ronghao Hu, Haiyang Lu & Xueqing Yan
Ultra-Intense Lasers Based on K.W.D. Ledingham e.a., Science, 300, 1107 (2003) Roel Rozendaal.
Polarized Positrons at Jefferson Lab
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

New concept of light ion acceleration from low-density target A.V. Brantov, V. Yu. Bychenkov September 27, 2017

Applications of ion beams new high-time resolution diagnostic techniques, since the short ion pulse duration [Borghesi PoP2002]; ion beam radiography / imaging and lithography; applications in energy research (ion “Fast Ignitor” in the inertial fusion energy context) [Roth PRL2001, Bychenkov Sov. Plasma Phys. 2001, Guskov QE2001]; medical treatment (proton therapy [Bulanov Sov. Plasma Phys. 2002], transmutation of short lived radio-isotopes for positron emission tomography (PET) in hospitals [Fritzler APL2003]); short neutron source [Roth PRL2013]; astrophysical phenomena in the Lab; nuclear physics [Bychenkov JETP99].

Recent experiments on proton acceleration F. Wagner et.al PRL 116, 205002 (2016) I. J. Kim et.al PoP 23, 070701 (2016) Laser: ~160-200J; 500-800 fs; I ~ (0.7-2.6)×1020 W/cm2 Laser: ~1 PW; 27J; 30 fs; 8.5 J on target, 6.1×1020 W/cm2 Polymethylpentene foil, thickness165-1400 nm, gold foil, 4 μm Polymer foil, thickness of 15 nm, (2.5° from normal) Proton energy 85 МэВ Proton energy 93 МэВ

Optimal target thickness Proton energy from foil target Proton energy from double-layered target 2D PIC simulation 150 TW 300 TW 500 TW ne =100 nc ne =400 nc There is optimal thickness for given density and laser intensity ! Condition of plasma transparency Coulomb field Laser field Absorption ? Ion energy ?

Problem of laser light transmission through plasma layer L.D. Landau & E.M. Lifshitz Electrodynamics of Continuous Media reflection transmission A=1- R –T absorption T R A

PIC code for simulation of laser-plasma interaction Laser pulse 2 ρ z target 2  0.3 - 300 J, 5×1019 -5×1022 W/cm2 2 τ = 30 fs 2 ρ = 4 μm Linear/circular polarization y x l ~ 0.01 - 10 λ Target CH2 foil (ne=200 nc ) electrons heavy ions light ions (protons) x  y  z = 50   20   20  x   y   z = /100  /20  /20

3D proton acceleration by 30 J laser pulse I =5 1021 W/cm2 ,  = 30 fs, focus spot 4 m (FWHM) Target – CH2 foil 0.1 m (ne=200 nc )

Proton acceleration from ultra-thin foils Phys. Rev. ST Acc. Beams 18, 021301(2015) t = 30 fs, ρ = 2 μm t = 30 fs, ρ = 4 μm t = 30 fs, ρ = 6 μm t = 150 fs, ρ = 4 μm Laser:  = 30-150 fs, 2-6 m (FWHM) I = 5×1018 W/cm2 --5×1022 W/cm2 Target: CH2 foil (ne=200 nc ) with optimal thickness l = 0.005λ - λ

Thin foils: linear vs. circular polarization linear polarization

Thin foils: linear vs. circular polarization ponderomotive field only ponderomotive field TNSA field 30 J, 5×1021 W/cm2 target thickness 0.13 λ/0.8 λ 2 τ = 30 fs 2 ρ = 4 μm linear/circular polarization

Thin foils: linear vs. circular polarization I stage of acceleration - ponderomotive acceleration laser light reflected from target Circular polarization – 85 MeV Linear polarization – 60 MeV I III II III stage of acceleration – like TNSA Circular polarization – from 240 to 290 MeV Linear polarization – from 150 to 230 MeV II stage of acceleration – most effective laser moves together with protons Circular polarization – from 85 to 240 MeV Linear polarization – from 60 to 150 MeV Semi-transparent target – possibility to increase interaction time !

Thin foils: linear vs. circular polarization 30 J, 5×1021 W/cm2 2 τ = 30 fs 2 ρ = 4 μm linear/circular polarization 109 protons with energy > 200 MeV 1.3 times maximum energy increase 2.5×109 protons with energy > 200 MeV

Proton acceleration: maximum energy vs Proton acceleration: maximum energy vs. thickness & density of the target. 30 J New regime of acceleration – increasing acceleration time ! Laser: = 30 fs, 4 m (FWHM) I = 5×1021 W/cm2 Target: CH2 plastic& aerogel

Proton acceleration: maximum energy vs Proton acceleration: maximum energy vs. thickness & density of the target. Laser: = 30 fs, 4 m (FWHM) I = 1022 W/cm2 60 J 12 J Target: CH2 plastic& aerogel Laser: = 30 fs, 4 m (FWHM) I = 2×1021 W/cm2

Experiment to increase acceleration time S. Kar et. al Nat. Comm. 7, 10792 (2016) Laser: ~3 J, 30 fs; I~ 1020 W/cm2 Simulation 30J, 30 fs

Synchronization of ion and field velocities vg Laser pulse E σ xe Relativistic ponderomotive force MeV V. Yu. Bychenkov et al, JETP Letters104, 618 (2016)

Proton acceleration by ponderomotive potential Ponderomotive force pushed electrons Acceleration of captured protons Laser laser 1 PW 30 J 30 fс 5×1021 W/cm2 Accelerated field A. Brantov, et al Phys. Rev. Lett. 116, 085004 (2016) Innovative targets ( ρ~1÷20 mg/cm3 )

3D PIC simulation of SASL

SASL regime: linear vs. circular polarization linear polarization

SASL regime for circularly polarized laser pulse Ex

SASL regime: linear vs. circular polarization 30 J, 5×1021 W/cm2 2 τ = 30 fs 2 ρ = 4 μm linear/circular polarization 5×109 protons with energy > 200 MeV 1.6 times maximum energy increase 1.3×1010 protons with energy > 200 MeV Plasma Phys. Control. Fusion 59, 034009 (2017)

Thin foil vs. SASL regime: circular polarization Protons from low-density targets in SASL regime Protons from thin foils of optimal thickness

Innovative low-density targets for particle acceleration Thickness – 100- 200 nm SWNTs with density of 0.1 mg/cm3 SWNTs with density of 1 mg/cm3 - To enrich the films with hydrogen the nanotubes have been filled with coronene (C24H12) molecules. - 2 mass % of hydrogen can be introduced into films. SWNTs with density of 30-50 mg/cm3 Thickness – 5- 10 μm Phys.Rev. Acc. Beams 20, 061301 (2017)

Conclusion Thank you for attention New dependence of maximum proton energy from laser intensity is demonstrated. Circularly polarized laser pulse has advantage in terms of ion acceleration from thin foils and low-density targets. The new mechanism of ion acceleration from low-density targets by slow light is proposed. Thank you for attention