(BABAR Collaboration) LAL – Orsay (Marie Curie EIF) A. Oyanguren (BABAR Collaboration) LAL – Orsay (Marie Curie EIF) 3/11/05 - Physikalisches Institut, Universität Bonn
Outline The CKM matrix Semileptonic decays of b quarks Exclusive |Vcb| Inclusive |Vcb| Moment analysis D** states Semileptonic decays of c quarks Calibrating Lattice-QCD Summary 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 2
Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb The CKM matrix Weak interactions of quarks in the SM: The CKM matrix: Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb VCKM = mq + Vqq’ 10 fundamental parameters of the Standard Model 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 3
The goal: Understand the SM picture The CKM matrix In the SM: VCKM unitary 4 free parameters Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb VCKM = Wolfenstein Parameterization l = |Vus| = 0.2227 0.0017 1-l2/2+O(l4) l A l3(r-ih) VCKM ~ -l+O(l5) 1-l2/2+O(l4) Al2 Al3(1-r-ih)+O(l5) -Al2+O(l4) 1+O(l4) The goal: Understand the SM picture to be able to find New Physics signatures 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 4
The Unitarity Triangle (UT) * VudVub* + VcdVcb* + VtdVtb* =0 Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb Vud Vcd Vtd Vus Vcs Vts Vub Vcb Vtb = The unitary clock (r,) a g b (0,0) (1,0) The idea: Overconstrain the UT Vcb and Vub have a key role determined from tree level processes Other approaches: http://www.slac.stanford.edu/xorg/ckmfitter 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 5
The problem The problem: quarks are confined inside hadrons... Instead of : Vcb We deal with : Vcb 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 6
l sl = |Vxx’|2 f (theory) Vxx’ The theoretical tools nl q2 x X’ Exclusive processes: Inclusive processes: 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 7
The theoretical tools Exclusive processes: Vcd Parameterized by form factors Heavy Quark Effective Theory For heavy quarks expansions in 1/mQ flavour and spin symmetries relations between form factors Lattice-QCD QCD computations form factor calculations Difficult to put quarks of different mass in the lattice Need calibration 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 8
Operator Product Expansion The theoretical tools Inclusive processes: for heavy quarks Operator Product Expansion = x Vcb f( parameters related with b quark properties inside the hadron ) kinetic energy, spin... Measurement of moments: Some inclusive observables O depend on the same parameters (For instance: HbHc : the lepton energy, the mass distribution of HC ) Same parameters for bc and bu transitions 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 9
Measuring Vcb 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 10
The experiments (4S) BB Z bb BABAR PB~ 30GeV BELLE PB~ 1GeV DELPHI CLEO (III) CLEO OPAL ALEPH Z bb PB~ 0.3GeV 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 11
Exclusive measurement of |Vcb| Known function Form factor of the B D* transition FD*(1)=1 Normalized by HQET (mQ ) at q2max FD*(1)= 0.91 0.04 (1/ mQ )n and QCD corrections The shape parameterized with a form factor slope 2 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 12
Exclusive measurement of |Vcb| m= m(D0) -m(D0) ~ m(soft) D*+ - l- candidates Eur. Phys. J. C33 (2004) 213 B D* l - D0 soft m= m(D0) -m(D0) ~ m(soft) D0 K-+ D0 K- + - + D0 K-+(0) 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 13
Exclusive measurement of |Vcb| World average |Vcb|=0.0413 0.0010 0.0020 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 14
Inclusive measurement of |Vcb| sl incl = B (BXcln)/B = |Vcb|2 f ( ) B = 1.568 0.009 ps d|Vcb| |Vcb| < 1% B (BXcln) = (10.70 0.14)% Need the same accuracy in f ( ) Ex: Studying the Xc hadronic mass distribution Getting these parameters from other observables: What is Xc? 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 15
? The hadronic system Xc HQET: D* 52% D 21% D** 27% Ground states Broad states Narrow states 21% 52% 27% ? D D* D** 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 16
D** mass distribution Exclusive reconstruction of Right sign Wrong sign ALEPH [ZP C73 (97) 601] D(*)pp contributions Right sign Found < 0.22% Wrong sign 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 17
D** mass distribution DELPHI fit superimposed to CDF data considering B(D1,D*1 Dpp =(2015)% [PRD 71 (05) 051103] CERN-EP-PH-2005-015 Narrow states B D1= (0.56 0.10)% (constrained) B D*2= (0.30 0.08)% Broad states B D*1= (1.24 0.25 0.27)% mD*1= 2445 34 10 MeV D*1= 234 74 25 MeV B D*0= (0.42 0.33 0.22)% D*0= 260 130 130 MeV BNR= (0.23 0.35 0.44)% sNR= (5.0 7.0) (GeV/c2)-1 (CDF normalized to the # DELPHI entries) 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 18
|Vcb| from Moments + G rLS Moments of the hadronic mass distribution Moments of the lepton energy spectrum 2 G 3 rLS Fixing ( ~ MB*-MB ) , and using constraints on mb and mc 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 19
|Vcb| from Moments OPE parameters from DELPHI Phys.Lett. B556 (2003) 41 LEP B(BXcln) OPE parameters from DELPHI Theo. uncertainty 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 20
|Vcb| from Moments The big success of OPE (hep-ph/0507253) 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 21
B (B narrow (jq=3/2) ln) >> B (B broad (jq=1/2) ln) Something puzzeling Theoretical predictions (OPE values, sum rules, lattice QCD) B (B narrow (jq=3/2) ln) >> B (B broad (jq=1/2) ln) B (B0Xcln) - B (B0Dln) - B (B0D*ln) = (2.9 0.3)% B (B0 D**ln) = (2.7 0.7 0.2)% With narrow states only accounting for (0.86 0.13) % B (B narrow ln) < B (B broad ln) Measured broad component not (only) jq=1/2? ( 0’, L>1 states?) Large 1/mc contributions in the theoretical predictions? 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 22
Decays of c quarks 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 23
Computations need to be confronted with experimental results Lattice-QCD d QCD computations in a space-time lattice parameters: s and quark masses a matrix elements: decay constants, form factors... Current Lattice-computers ~ teraflop = 1012 operations/sec. Difficult to put together quarks of very different mass approximations Difficult to include dynamical quark-pairs unquenched Impressive accurate results Ex: new result of fB = 216 22 MeV (HPQCD) affecting md |Vtd| accuracy from 16% to 11% Computations need to be confronted with experimental results 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 24
Semileptonic decays of c quarks In the charm sector: Vud Vus Vub Vcd Vcs Vcb Vtd Vts Vtb Vcd, Vcs Constrained from measurements of the two first rows Using exclusive semileptonic decays of charm hadrons to measure form factors and validate Lattice QCD results Vcd Parameterized by form factors 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 25
Semileptonic decays of c quarks D K l n and D p l n decays Phys. Lett. B317 (1993) 647 High accuracy needed to measure the q2- dependence 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 26
Semileptonic decays of c quarks Lattice QCD form factors (D K, D p) Fermilab + MILC, hep-ph/0408306 BES, Phys. Lett. B597 (04) 39 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 27
Semileptonic decays of c quarks Charm Semileptonic Decays: Calibrate Lattice QCD results Improve results on B decays fp , fB , fB* , g B*Bp |Vub| measurement: 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 28
(4S) @ B factories Y(3770) Experimental setups @ charm factories BELLE CLEO-c BES-III BABAR DD BB 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 29
(4S) cc Y(3770) DD Experimental setups Some advantages and disavantages (4S) cc Y(3770) DD Large cc (~1.3 nb) Very large DD (~6 nb) Very large statistics Low multiplicity Vertex separation Small background Fragmentation (c D* = 26%) Well known En Background Still few data 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 30
Experimental techniques At the Y(3770) Unique kinematics: pp (GeV) CLEO-c DE=Ebeam-ED No PID DU=Emiss-pmiss s.l. channel D p e n CLEO-c hep-ex/0408077 D K e n D p e n Preliminary DU=Emiss-pmiss (GeV) Tagged D CLEO-c Events/5 Mev 10183 112 Events/1 Mev 60 pb-1 Expected resolution on q2 ~ 0.03 GeV2 MD (GeV) DU=Emiss-pmiss (GeV) 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 31
Experimental techniques At the (4S) bb/cc separation event shape variables BB Continuum events: e+e- cc cc En estimation from all particles in the event D*+ D0 + s ~ 0.35 GeV q2 = (pl + pn)2 = ( pD – pK )2 50904 evts Events/1.6 Mev data Resolution on q2 found ~ 0.05-0.25 GeV2 Events/2.7 Mev 19.5 fb-1 D K e n Background contribution Dm (GeV) Dm (GeV) 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 32
Experimental techniques Comparisons: 2006 6.7 fb-1 60 pb-1 3 fb-1 ? 20 fb-1 300 fb-1 10K 6K 1800 90K 30K 450K 0.9K 0.3K 175 9K 3K 45K * D K form factor by FOCUS with 6K events *Challenge: background suppression BaBar 5 times more stat. only with 20 fb-1 (Run1) 0.4 0.22 0.03 0.05-0.25 And good q2 resolution Phys.Lett. B607 (2005) 233-242 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 33
Summary |Vcb| and |Vub| are key elements of the CKM matrix |Vcb| accuracy is at the 1.2% level (world average) by using inclusive decays and OPE Charm Semileptonic Decays provide a way to calibrate Lattice-QCD computations Improve |Vub| 3/11/05 - Physikalisches Institut, Universität Bonn A. Oyanguren 34