Geometry/Trig Name: __________________________

Slides:



Advertisements
Similar presentations
Parallel Lines and Planes Section Definitions.
Advertisements

Blue – 2/23/2015 Gold – 2/24/ Name 2 pair of alternate interior angles  5 &  3 and  4 &  1 2. What is the sum of m  1 + m  2 + m  3? 180°
What are the ways we can prove triangles congruent? A B C D Angle C is congruent to angle A Angle ADB is congruent to angle CDB BD is congruent to BD A.
Introduction to Triangles
Introduction to Angles and Triangles
Applying Triangle Sum Properties
TRIANGLES (There are three sides to every story!).
A triangle can be classified by _________ and __________. sidesangles There are four ways to classify triangles by angles. They are Equiangular Acute.
Geometry/Trig 2 Name: __________________________
Warmup – grab a book Room , submit answers for x and y.
Congruent Angles Associated with Parallel Lines. Parallel Postulate: Through a point not on a line, there is exactly one parallel to the given line. a.
What is a triangle? Triangles can be classified by their angles. There are four different classifications by angles. Equiangular triangles are triangles.
ProofsPolygonsTriangles Angles and Lines Parallel.
Geometry/Trig 2Name: __________________________ Unit 3 Review Packet ANSWERSDate: ___________________________ Section I – Name the five ways to prove that.
3-3 Proving Lines Parallel
Warm-Up Classify the angle pair as corresponding, alternate interior, alternate exterior, consecutive interior or.
200 pt 300 pt 400 pt 500pt 100 pt 200 pt 300 pt 400 pt 500 pt 100 pt 200pt 300 pt 400pt 500 pt 100pt 200pt 300 pt 400 pt 500 pt 100 pt 200 pt 300 pt 400pt.
Geometry/Trig 2Name: __________________________ Unit 3 Review PacketDate: ___________________________ Section I. Construct the following in the box: a.Create.
The answers to the review are below. Alternate Exterior Angles Postulate Linear Pair Theorem BiconditionalConclusion Corresponding Angles Postulate 4 Supplementary.
Triangles and Angles Classifying Triangles. Triangle Classification by Sides Equilateral 3 congruent sides Isosceles 2 congruent sides Scalene No congruent.
EXAMPLE 1 Identify congruent angles SOLUTION By the Corresponding Angles Postulate, m 5 = 120°. Using the Vertical Angles Congruence Theorem, m 4 = 120°.
StatementsReasons 1. ________________________________ 2.  1   2 3. ________________________________ 4. ________________________________ 1. ______________________________.
Transversal t intersects lines s and c. A transversal is a line that intersects two coplanar lines at two distinct points.
Warm Ups Classify each angle Classify each angle Solve Each Equation x= x+105= x + 58 = x = 90.
Triangles The sum of the measures of the angles of a triangle is 180 degrees. m A + m B + m C = 180 o A BC An angle formed by a side and an extension.
Triangles Chapter What is the sum of the angles inside a triangle? 180º? Prove it m Given A B C Angle Addition Postulate/Definition of a Straight.
Section V - Proofs StatementsReasons J GK I H 1. Given: GK bisects  JGI; m  3 = m  2 Prove: GK // HI Given Given Geometry/Trig.
How do we analyze the relationships between sides and angles in triangles? AGENDA: Warmup Triangle Notes/Practice.
3-2 Properties of Parallel Lines. 2) Postulate 10: Corresponding Angles Postulate If two parallel lines are cut by a transversal then the pairs of corresponding.
5-1 Classifying Triangles
Introduction Think of all the different kinds of triangles you can create. What are the similarities among the triangles? What are the differences? Are.
3.3 Proving Lines Parallel
ÐC is the smallest angle
Assignment #45 – Review for Week 10 Quiz
3.4 Parallel Lines and Transversals
Parallel Lines and Angle Relationships
Identify the type of angles.
3-2 Properties of Parallel Lines
Proving Lines Parallel
Introduction to Triangles
Proofs Geometry - Chapter 2
Section 3-4 Angles of a Triangle.
Section 3-2 Properties of Parallel Lines, Calculations.
3.3 Parallel Lines & Transversals
Prove Triangles Congruent by ASA & AAS
Quarter One Post Test Review!
3-2 Angles & Parallel Lines
Parallel Lines and Planes
7-3 Similar Triangles.
Geometry/Trig Name: __________________________
Geometry/Trig Name: __________________________
Classifying Triangles by ANGLES
3.3 Parallel Lines & Transversals
Transversals and Parallel Lines
Chapter 4. Congruent triangles
Geometry/Trig Name: __________________________
Triangles.
3-3 Parallel Lines & the Triangle Angle Sum Theorem
Chapter 3 Review 3.1: Vocabulary and Notation
2.7 Proving Segment Relationships
Proving Lines Parallel
4.1 – Apply triangle sum properties
Name ______________________________________________ Geometry Chapter 3
Section 3-3 Proving Lines Parallel, Calculations.
Hint: Set up & solve a system of equations.
Parallel Lines and Transversals
4-1 Classifying Triangles
Geometry/Trig 2 Name: ___________________________________
Geometry/Trig Name: _________________________
Presentation transcript:

Geometry/Trig Name: __________________________ Unit 3 Review Packet – Answer Key Date: ___________________________ Section I – Name the five ways to prove that parallel lines exist. 1. If corresponding angles are congruent, then lines are parallel. 2. If alternate interior angles are congruent, then lines are parallel. 3. If alternate exterior angles are congruent, then lines are parallel. 4. If same side interior angles are supplementary, then lines are parallel. 5. If same side exterior angles are supplementary, then lines are parallel. Section II – Identify the pairs of angles. If the angles have no relationship, write none. 1. Ð7 & Ð11 None 2. Ð3 & Ð6 Alternate Interior Angles 3. Ð8 & Ð16 Corresponding Angles 4. Ð2 & Ð7 Alternate Exterior Angles 5. Ð3 & Ð5 Same Side Interior Angles 6. Ð1 & Ð16 None 7. Ð1 & Ð6 None 8. Ð1 & Ð4 Vertical Angles 1 2 9 10 a 3 4 11 12 5 6 13 14 b 7 8 15 16 Section III – Fill In Vertical angles are congruent. If lines are parallel, then corresponding angles are congruent. If lines are parallel, then alternate interior angles are congruent. If lines are parallel, then alternate exterior angles are congruent. If lines are parallel, then same side interior angles are supplementary. If lines are parallel, then same side exterior angles are supplementary.

Geometry/Trig Name: __________________________ Unit 3 Review Packet – Page 2 – Answer Key Date: ___________________________ Section IV – Determine which lines, if any, are parallel based on the given information. 1.) mÐ1 = mÐ9 c // d 2.) mÐ1 = mÐ4 None 3.) mÐ12 + mÐ14 = 180 a // b 4.) mÐ1 = mÐ13 None 5.) mÐ7 = mÐ14 c // d 6.) mÐ13 = mÐ11 None 7.) mÐ15 + mÐ16 = 180 None 8.) mÐ4 = mÐ5 a //b 1 2 9 10 a 3 4 11 12 5 6 13 14 b 7 8 15 16 c d Section IV – Determine which lines, if any, are parallel based on the given information. 1. mÐ1 = mÐ4 a // b 2. mÐ6 = mÐ8 t // s 3. Ð1 and Ð11 are supplementary None 4. a ^ t and b ^ t a // b 5. mÐ14 = mÐ5 None 6. Ð6 and Ð7 are supplementary t // s 7. mÐ14 = mÐ15 k // m 8. Ð7 and Ð8 are supplementary None 9. mÐ5 = mÐ10 k // m 10. mÐ1 = mÐ13 None a b k m 15 t 13 12 11 9 8 7 10 2 5 1 3 4 6 s 14

Geometry/Trig Name: __________________________ Unit 3 Review Packet – Page 3 – Answer Key Date: ___________________________ J Section V - Proofs 1. Given: GK bisects ÐJGI; mÐ3 = mÐ2 Prove: GK // HI 1 G K 2 Statements Reasons 1. Given 1. GK bisects ÐJGI 3 2. mÐ1 = mÐ2 2. Definition of an Angles Bisector I H 3. mÐ3 = mÐ2 3. Given 4. mÐ1 = mÐ3 4. Substitution 5. GK // HI 5. If corresponding angles are congruent, then the lines are parallel. 2. Given: AJ // CK; mÐ1 = mÐ5 Prove: BD // FE A C Reasons Statements 1 2 3 1. AJ // CK 1. Given 2. mÐ1 = mÐ3 2. If lines are parallel, then corresponding angles are congruent. 3. mÐ1 = mÐ5 3. Given 4. mÐ3 = mÐ5 4. Substitution 5. BD // FE 5. If corresponding angles are congruent, then the lines are parallel. B D 4 5 F E J K

Geometry/Trig Name: __________________________ Unit 3 Review Packet – Page 4 – Answer Key Date: ___________________________ 3. Given: a // b; Ð3 @ Ð4 Prove: Ð10 @ Ð1 1 2 a 3 4 Statements Reasons 5 6 1. a // b 1. Given 2. Ð4 @ Ð7 2. If lines are parallel then alternate interior angles are congruent. 3. Ð3 @ Ð4 3. Given 4. Ð3 @ Ð7 4. Substitution 5. Ð1 @ Ð3; Ð7 @ Ð10 5. Vertical Angles Theorem 6. Ð10 @ Ð1 6. Substitution 7 8 b 10 9 c d 4. Given: Ð1 and Ð7 are supplementary. Prove: mÐ8 = mÐ4 1 3 b 4 5 6 7 a Statements Reasons 8 2 1. Ð1 and Ð7 are supplementary 1. Given 2. mÐ1 + mÐ7 = 180 2. Definition of Supplementary Angles 3. mÐ6 + mÐ7 = 180 3. Angle Addition Postulate 4. mÐ1 + mÐ7 = mÐ6 + mÐ7 4. Substitution 5. mÐ1 = mÐ6 5. Subtraction Property 6. a // b 6. If corresponding angles are congruent, then the lines are parallel. 7. mÐ8 = mÐ4 7. If lines are parallel, then corresponding angles are congruent.

Geometry/Trig Name: __________________________ Unit 3 Review Packet – Page 5 – Answer Key Date: ___________________________ 5. Given: ST // QR; Ð1 @ Ð3 Prove: Ð2 @ Ð3 P Statements Reasons ST // QR 1. Given 2. Ð1 @ Ð2 2. If lines are parallel, then corresponding angles are congruent. 3. Ð1 @ Ð3 3. Given 4. Ð2 @ Ð3 4. Substitution 1 3 S T 2 Q R 6. Given: BE bisects ÐDBA; Ð1 @ Ð3 Prove: CD // BE Statements Reasons 1. BE bisects ÐDBA 1. Given 2. Ð2 @ Ð3 2. Definition of an Angle Bisector 3. Ð1 @ Ð3 3. Given 4. Ð2 @ Ð1 4. Substitution 5. CD // BE 5. If alternate interior angles are congruent, then the lines are parallel. C B 2 3 1 A D E

Geometry/Trig Name: __________________________ Unit 3 Review Packet – page 6 – Answer Key Date: ___________________________ 7. Given: AB // CD; BC // DE Prove: Ð2 @ Ð6 Statements Reasons 1. AB // CD 1. Given 2. Ð2 @ Ð4 2. If lines are parallel, then alternate interior angles are congruent. 3. BC // DE 3. Given 4. Ð4 @ Ð6 4. If lines are parallel, then alternate interior angles are congruent. 5. Ð2 @ Ð6 5. Substitution B D 2 6 4 1 3 5 7 A C E 8. Given: AB // CD; Ð2 @ Ð6 Prove: BC // DE Statements Reasons 1. AB // CD 1. Given 2. Ð2 @ Ð4 2. If lines are parallel, then alternate interior angles are congruent. 3. Ð2 @ Ð6 3. Given 4. Ð4 @ Ð6 4. Substitution 5. BC // DE 5. If alternate interior angles are congruent, then the lines are parallel. B D 2 6 4 1 3 5 7 A C E

Geometry/Trig Name: __________________________ Unit 3 Review Packet – page 7– Answer Key Date: ___________________________ Section VI – Solve each Algebra Connection Problem. 1. 2. w 4x - 5 23y z + 57 x 65° 125° 37° 2y Equations: 37 = w x + 37 = 180 2y + 37 = 180 z + 57 = 143 w = 37 x = 143 y = 71.5 z = 86 Equations: 65 + 23y = 180 65 = 4x – 5 x = 17.5 y = 5 Equations: 30 + 75 = 5x 30 + 75 + y = 180 Equation: 6x + x + 12 = 8x + 1 3. 4. 30° x + 12 y 5x 75° 6x 8x + 1 x = 21 y = 75 x = 11 Section VII – Determine whether the given side lengths can create a triangle. 1) 7, 8, 9  YES 2) 7, 8, 15  NO 3) 7, 8, 14  YES 4) 3, 4, 5  YES

Equilateral Equiangular Scalene Obtuse Geometry/Trig Name: __________________________ Unit 3 Review Packet – page 8 Date: ___________________________ Section VIII - Classify each triangle by its sides and by its angles. 1. A 2. D 3. G 104° 47 53° 19 60° E F H B C I Scalene Right Scalene Obtuse Scalene Acute 4. K 5. O 6. Q 60° 32° P 118° 36° J M 60° L N R Scalene Acute Equilateral Equiangular Scalene Obtuse 7. In DABC which side is the longest? ___BC_____ the shortest? ______AC___ 8. In DDEF which side is the longest? _DE___ the shortest? ___EF_______ 9. In DGHI which side is the longest? ___HI_____ the shortest? _____GI____ 10. In DJKL which side is the longest? ____JK____ the shortest? ____KL_____ 11. In DMNO which side is the longest? ____all the same____ 12. In DPQR which side is the longest? _QR____ the shortest___PR_____ In each triangle, name the smallest angle and the largest angle. A D I 6.4 4.1 118 12.9 128 17.3 C F G B 5.7 E 136 11 H Smallest <B Smallest <E Smallest <I Largest <C Largest <D Largest <G