Loophole-free test of Bell’s theorem with entangled photons

Slides:



Advertisements
Similar presentations
Bell violation with entangled photons and without the fair-sampling assumption Foundations of Physics 2013 LMU Munich, Germany 30 July 2013 Johannes Kofler.
Advertisements

Closing loopholes in Bell tests of local realism Workshop Quantum Physics and the Nature of Reality International Academy Traunkirchen, Austria 22 November.
I NFORMATION CAUSALITY AND ITS TESTS FOR QUANTUM COMMUNICATIONS I- Ching Yu Host : Prof. Chi-Yee Cheung Collaborators: Prof. Feng-Li Lin (NTNU) Prof. Li-Yi.
From Einstein’s intuition to quantum bits: a new quantum age?
Experiments thought to prove non – locality may be artifacts Karl Otto Greulich. Fritz Lipmann Institute Beutenbergstr. 11 D Jena Entanglement, the.
1 quantum teleportation David Riethmiller 28 May 2007.
Ilja Gerhardt QUANTUM OPTICS CQT GROUP Ilja Gerhardt, Matthew P. Peloso, Caleb Ho, Antía Lamas-Linares and Christian Kurtsiefer Entanglement-based Free.
Blaylock - Clark University 2/17/10 Wringing John Bell vocabulary the EPR paradox Bell’s theorem Bell’s assumptions what does it mean? Guy Blaylock Clark.
Texas A&MTexas A&M Physics&AstronomyPhysics&Astronomy Seven Pines Symposium XVII 2013 Bell Inequality Experiments Edward S. Fry Physics & Astronomy Department.
Bell inequality & entanglement
Bell’s inequalities and their uses Mark Williamson The Quantum Theory of Information and Computation
Entanglement and Bell’s Inequalities Aaron Michalko Kyle Coapman Alberto Sepulveda James MacNeil Madhu Ashok Brian Sheffler.
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Future Challenges in Long-Distance Quantum Communication Jian-Wei Pan Hefei National Laboratory for Physical Sciences at Microscale, USTC and Physikalisches.
Chapter 22 The EPR paper and Bell's theorem by Steve Kurtz.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Necessary and sufficient conditions for macroscopic realism from quantum mechanics Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich,
Study and characterisation of polarisation entanglement JABIR M V Photonic sciences laboratory, PRL.
Physics is becoming too difficult for physicists. — David Hilbert (mathematician)
Quantum Information, Communication and Computing Jan Kříž Department of physics, University of Hradec Králové Doppler Institute for mathematical physics.
Institute of Technical Physics Entanglement – Beamen – Quantum cryptography The weird quantum world Bernd Hüttner CPhys FInstP DLR Stuttgart.
In 1887,when Photoelectric Effect was first introduced by Heinrich Hertz, the experiment was not able to be explained using classical principles.
Feynman Festival, Olomouc, June 2009 Antonio Acín N. Brunner, N. Gisin, Ll. Masanes, S. Massar, M. Navascués, S. Pironio, V. Scarani Quantum correlations.
Paraty, Quantum Information School, August 2007 Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Quantum Cryptography (III)
Photonic Bell violation closing the fair-sampling loophole Workshop “Quantum Information & Foundations of Quantum Mechanics” University of British Columbia,
University of Gdańsk, Poland
Requirements for a loophole-free Bell test using imperfect setting generators Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich,
Dr Martin Hendry University of Glasgow Lumps Light in or ? Reach for the Stars.
QUANTUM TELEPORTATION
1 Introduction to Quantum Information Processing CS 667 / PH 767 / CO 681 / AM 871 Richard Cleve DC 2117 Lecture 19 (2009)
Steering witnesses and criteria for the (non-)existence of local hidden state (LHS) models Eric Cavalcanti, Steve Jones, Howard Wiseman Centre for Quantum.
QCCC07, Aschau, October 2007 Miguel Navascués Stefano Pironio Antonio Acín ICFO-Institut de Ciències Fotòniques (Barcelona) Cryptographic properties of.
A comparison between Bell's local realism and Leggett-Garg's macrorealism Group Workshop Friedrichshafen, Germany, Sept 13 th 2012 Johannes Kofler.
Necessary adaptation of the CH/Eberhard inequality bound for a loophole-free Bell test Quantum Theory: from Problems to Advances – QTPA Linnaeus University,
Device-independent security in quantum key distribution Lluis Masanes ICFO-The Institute of Photonic Sciences arXiv:
IIS 2004, CroatiaSeptember 22, 2004 Quantum Cryptography and Security of Information Systems 1 2
Blaylock - Williams College 4/17/15 Wringing John Bell vocabulary the EPR paradox Bell’s theorem Bell’s assumptions what does it mean? Guy Blaylock Williams.
1 Experimenter‘s Freedom in Bell‘s Theorem and Quantum Cryptography Johannes Kofler, Tomasz Paterek, and Časlav Brukner Non-local Seminar Vienna–Bratislava.
Quantum Dense coding and Quantum Teleportation
Black-box Tomography Valerio Scarani Centre for Quantum Technologies & Dept of Physics National University of Singapore.
Quantum mechanical phenomena. The study between quanta and elementary particles. Quanta – an indivisible entity of a quantity that has the same value.
A condition for macroscopic realism beyond the Leggett-Garg inequalities APS March Meeting Boston, USA, March 1 st 2012 Johannes Kofler 1 and Časlav Brukner.
Quantum entanglement and macroscopic quantum superpositions Quantum Information Symposium Institute of Science and Technology (IST) Austria 7 March 2013.
Bell tests with Photons Henry Clausen. Outline:  Bell‘s theorem  Photon Bell Test by Aspect  Loopholes  Photon Bell Test by Weihs  Outlook Photon.
Violation of local realism with freedom of choice Faculty of Physics, University of Vienna, Austria Institute for Quantum Optics and Quantum Information.
1 entanglement-quantum teleportation entanglement-quantum teleportation entanglement (what is it?) quantum teleportation (intuitive & mathematical) ‘ quantum.
Nonlocality test of continuous variable state 17, Jan,2003 QIPI meeting Wonmin Son Queen’s University, Belfast.
The EPR Paradox, Bell’s inequalities, and its significance By: Miles H. Taylor.
Bell and Leggett-Garg tests of local and macroscopic realism Theory Colloquium Johannes Gutenberg University Mainz, Germany 13 June 2013 Johannes Kofler.
Bell’s Inequality.
1 Introduction to Quantum Information Processing CS 467 / CS 667 Phys 467 / Phys 767 C&O 481 / C&O 681 Richard Cleve DC 3524 Course.
Macrorealism, the freedom-of-choice loophole, and an EPR-type BEC experiment Faculty of Physics, University of Vienna, Austria Institute for Quantum Optics.
Spooky action at distance also for neutral kaons? by Beatrix C. Hiesmayr University of Vienna Projects: FWF-P21947 FWF-P23627 FWF-P26783 Fundamental Problems.
Secret keys and random numbers from quantum non locality Serge Massar.
Non-locality and quantum games Dmitry Kravchenko University of Latvia Theory days at Jõulumäe, 2008.
Cryptography and Non-Locality Valerio Scarani Centre for Quantum Technologies National University of Singapore Ph.D. and post-doc positions available Barrett.
No Fine Theorem for Macrorealism Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany Quantum and Beyond Linnaeus University,
Quantum nonlocality based on finite-speed causal influences
Entangled Electrons.
Understanding Quantum Correlations
No Fine theorem for macroscopic realism
The Relativistic Quantum World
M. Stobińska1, F. Töppel2, P. Sekatski3,
Simulating entanglement without communication
Quantum mechanics from classical statistics
Johannes Kofler Max Planck Institute of Quantum Optics (MPQ)
Max Planck Institute of Quantum Optics (MPQ)
EPR Paradox and Bell’s theorem
Atom Chip Group, Ben Gurion University, Beersheba, Israel
Experimental test of nonlocal causality
Presentation transcript:

Loophole-free test of Bell’s theorem with entangled photons Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching/Munich, Germany Indian Institute of Science Education and Research Mohali, India 14 Oct. 2016

Introduction Local realism: “objects have pre-existing definite properties & no action at a distance”  Bell’s inequality Relevant for foundations of quantum mechanics and (security of) modern quantum information protocols Quantum cryptography Randomness amplification / expansion Bell experiments have “loopholes” Locality Freedom of choice Fair sampling Coincidence time Memory Four “loophole-free” experiments in 2015 (Delft1, Boulder2, Vienna3, Munich) John S. Bell (1928–1990) 1 B. Hensen et al., Nature 526, 682 (2015) 2 L. K. Shalm et al., PRL 115, 250402 (2015) 3 M. Giustina et al., PRL 115, 250401 (2015)

History Quantum mechanics and hidden variables Kopenhagen interpretation (Bohr, Heisenberg, etc.) 1932 Von Neumann’s (wrong) proof of non-possibility of hidden variables 1935 Einstein-Podolsky-Rosen paradox 1952 De Broglie-Bohm (nonlocal) hidden variable theory Bell’s theorem on local hidden variables First successful Bell test (Freedman & Clauser) since then Closing loopholes Bohr and Einstein (1925)

Local realism Classical world view: Realism: Physical properties are defined prior to and independent of measurement (via hidden variables) Locality: No physical influence can propagate faster than the speed of light External world Passive observers

Bell’s Assumptions Bell’s theorem Bell:1 Deterministic LHV: “Determinism”: “Locality”: Bell:2 Stochastic LHV: “Local causality”:  “Freedom of choice”:3 (“measurement independence”)  Local causality  Freedom of choice  Bell inequality 1 J. S. Bell, Physics 1, 195 (1964) 3 J. F. Clauser & M. A. Horne, Phys. Rev. D 10, 526 (1974) 2 J. S. Bell, Epistemological Lett. 9 (1976)

Picture: Rev. Mod. Phys. 86, 419 (2014) Derivation of the CHSH inequality Dichotomic outcomes: Ai = A(ai,) = 1 Bj = B(bj,) = 1 A1 (B1 + B2) + A2 (B1 – B2) = 2 A1B1 + A1B2 + A2B1 – A2B2 = 2 S := A1B1 + A1B2 + A2B1 – A2B2  2 = locality SQM = 22 Picture: Rev. Mod. Phys. 86, 419 (2014) J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, PRL 23, 880 (1969)

Bell’s Assumptions Freedom of choice Local causality  Freedom of choice  X  specific Bell inequality Bell’s original derivation1 only implicitly assumed freedom of choice: explicitly: A(a,b,λ) B(a,b,λ) locality freedom of choice implicitly: (λ|a,b) A(a,λ) B(b,λ) – (λ|a,c) A(a,λ) B(c,λ) Remarks: original Bell paper:1 X = “Perfect anti-correlation”: A(b,λ) = –B(b,λ) CHSH:2 X = “Fair sampling” 1 J. S. Bell, Physics 1, 195 (1964) 2 J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, PRL 23, 880 (1969)

Loopholes Loopholes: maintain local realism despite exp. Bell violation Relevance – quantum foundations – quantum cryptography, randomness amplification/expansion

Locality Loophole addressed by space-time arrangement:1,2 26.05.2018 Locality Loophole addressed by space-time arrangement:1,2 Space-like separation between the outcomes (outcome independence) Space-like separation between each outcome and the distant setting (setting independence) Remark: Collapse locality loophole3 cannot be fully closed in principle 1 A. Aspect, P. Grangier, G. Roger, PRL 49, 91 (1982) 2 G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, PRL 81, 5039 (1998) 3 A. Kent, PRA, 012107 (2005)

Freedom of choice Loophole addressed by space-time arrangement:1,2 26.05.2018 Freedom of choice Loophole addressed by space-time arrangement:1,2 Space-like separation of setting choice events a,b and the pair emission event E (assuming that hidden variables are created at E) Remarks: Superdeterminism can never be ruled out Cosmic sources:3 1 T. Scheidl, R. Ursin, J.K., T. Herbst, L. Ratschbacher, X. Ma, S. Ramelow, T. Jennewein, A. Zeilinger, PNAS 107, 10908 (2010) 2 C. Erven, E. Meyer-Scott, K. Fisher, J. Lavoie, B. L. Higgins, Z. Yan, C. J. Pugh, J.-P. Bourgoin, R. Prevedel, L. K. Shalm, L. Richards, N. Gigov, R. Laflamme, G. Weihs, T. Jennewein, K. J. Resch, Nature Photon. 8, 292 (2014) 3 J. Gallicchio, A. S. Friedman, D. I. Kaiser, PRL 112, 110405 (2014)

Locality & freedom of choice 26.05.2018 Locality & freedom of choice Tenerife b,B La Palma E,A a E Optical Ground Station, Tenerife Photo: ESA T. Scheidl et al. PNAS 107, 10908 (2010)

Fair sampling Fair sampling: Local detection efficiency depends only on hidden variable: A = A(), B = B()  observed outcomes faithfully reproduce the statistics of all emitted particles Unfair sampling: Local detection efficiency is setting-dependent A = A(a,), B = B(b,)  fair-sampling (detection) loophole1 Local realistic models with unfair sampling2,3 SQM = 22 Reproduces the quantum predictions of the singlet state (with detection efficiency 2/3) Detection efficiency is not optional in security-related tasks: faked Bell violations4 1 P. M. Pearle, PRD 2, 1418 (1970) 2 F. Selleri & A. Zeilinger, Found. Phys. 18, 1141 (1988) 3 N. Gisin & B. Gisin, Phys. Lett. A 260, 323 (1999) 4 I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, V. Scarani, V. Makarov, C. Kurtsiefer, PRL 107, 170404 (2011)

Fair sampling Two options to close the loophole: Violate inequality that assumes fair sampling (e.g. CHSH) and show large total detection efficiency (> 82.8% for CHSH) Atoms1, superconducting qubits2 Violate inequality that does not assume fair sampling (e.g. CH, Eberhard, eff. 2/3) Photons3,4 1 M. A. Rowe et al., Nature 409, 791 (2001) 2 M. Ansmann et al., Nature 461, 504 (2009) 3 M. Giustina et al., Nature 497, 227 (2013) 4 B. G. Christensen et al., PRL 111, 130406 (2013)

Coincidence time Unfair coincidences: Detection time is setting-dependent TA = TA(a,), TB = TB(b,)  coincidence-time loophole1 Moving windows coinc.-time loophole open Predefined fixed local time slots2 coinc.-time loophole closed3,4,5 1 J.-Å. Larsson and R. Gill, EPL 67, 707 (2004) 3 M. B. Agüero et al., PRA 86, 052121 (2012) 4 B. G. Christensen et al., PRL 111, 130406 (2013) 5 M. Giustina et al., Nature 497, 227 (2013) 2 J.-Å. Larsson, M. Giustina, J.K., B. Wittmann, R. Ursin, S. Ramelow, PRA 90, 032107 (2014)

Memory Memory: k-th outcome A(k) can depend on history: A(k) = A(k)(A(1),…,A(k–1); a(1),…,a(k); B(1),…,B(k–1); b(1),…,b(k–1); (1),…,(k)) similar for B(k)  memory loophole1,2,3 Two solutions: Space-like separated setups, used only once for each pair (unfeasible / impossible) ..... Drop assumption that trials are i.i.d. (independent and identically distributed) cannot use “standard” standard-deviation approach  “hypothesis testing”, e.g. supermartingales & Hoeffding‘s inequality 1 L. Accardi & M. Regoli, quant-ph/0007005; quantph/0007019; quant-ph/0110086 2 R. Gill, quant-ph/0110137, quant-ph/0301059 3 A. Kent, PRA 72, 012107 (2005)

The Vienna experiment Source: polarization entangled photons, pulsed (1 MHz) type-II SPDC in Sagnac config. Detectors: superconducting transition edge sensors

Closing the locality & freedom-of-choice loopholes

Closing fair sampling, coincidence-time, memory CH-E inequality derived without the fair-sampling assumption: Can be violated with non-maximally entangled states Locally predefined fixed time-slots close the coincidence-time loophole Excess predictability of settings:   2  510–4 Requires adaptation of CH-E inequality:1 Closing memory loophole: Hoeffding’s inequality for J process 1 J. Kofler, M. Giustina, J.-Å. Larsson, M. W. Mitchell, PRA 93, 032115 (2016)

Results trials at 1 MHz, 3510 s measurement time, i.e. 3.5 billion trials one down-conversion pair in every 300 trials total detection efficiency: 78.6% (Alice), 76.2% (Bob) state: r  –2.9, visibility > 99% (for product and singlet state) J-value: 7.2710–6 p-value: 3.7410–31 (probability that local realism could have produced the data by a random variation) M. Giustina et al., PRL 115, 250401 (2015)

p-value versus excess predictability p-value of 3.7410–31 for characterized excess predictability   2.410–4 p-value remains below “gold standard” of 10–6 (dashed line) for  up to 0.65%

Conclusion Bell experiment using entangled photons Closing simultaneously the following loopholes: Locality Freedom of choice Fair sampling Coincidence time Memory Strong statistical violation Still requires assumptions (no super- determinism, classical rules of logic, etc)

The team Marissa Giustina Marijn A. M. Versteegh Sören Wengerowsky Johannes Handsteiner Armin Hochrainer Kevin Phelan Fabian Steinlechner Thomas Scheidl Rupert Ursin Bernhard Wittmann Anton Zeilinger Thomas Gerrits Adriana E. Lita L. Krister Shalm Sae Woo Nam Carlos Abellán Waldimar Amaya Valerio Pruneri Morgan W. Mitchell Jörn Beyer Jan-Åke Larsson Johannes Kofler Reference: Phys. Rev. Lett. 115, 250401 (2015)