June , Dipartimento di Fisica, Universita’ di Pavia, Italy

Slides:



Advertisements
Similar presentations
December 17, 2004 JLab Hall A Upgrade 1 Semi-Inclusive DIS --opportunities at JLab upgrade Feng Yuan RBRC, Brookhaven National Laboratory.
Advertisements

Cédric Lorcé IPN Orsay - LPT Orsay Observability of the different proton spin decompositions June , University of Glasgow, UK CLAS12 3rd European.
Quantum Phase-Space Quark Distributions in the Proton Xiangdong Ji University of Maryland — EIC workshop, Jefferson Lab, March 16, 2004 —
Transversity and Transverse-Momentum-Dependent Partonic Functions Alessandro Bacchetta.
Cédric Lorcé IFPA Liège ECT* Colloquium: Introduction to quark and gluon angular momentum August 25, 2014, ECT*, Trento, Italy Spin and Orbital Angular.
Cédric Lorcé SLAC & IFPA Liège How to define and access quark and gluon contributions to the proton spin December 2, 2014, IIT Bombay, Bombay, India INTERNATIONAL.
Polarized structure functions Piet Mulders ‘Lepton scattering and the structure of nucleons and nuclei’ September 16-24, 2004
Cédric Lorcé SLAC & IFPA Liège Transversity and orbital angular momentum January 23, 2015, JLab, Newport News, USA.
Light-front densities for transversely polarized hadrons Lorcé Cédric Mainz University Germany *4th Workshop on ERHMT, JLAb, Newport News, Virginia USA.
QCD Map of the Proton Xiangdong Ji University of Maryland.
Xiangdong Ji University of Maryland/SJTU Physics of gluon polarization Jlab, May 9, 2013.
Xiangdong Ji University of Maryland/SJTU
9/19/20151 Semi-inclusive DIS: factorization Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory.
Cédric Lorcé IPN Orsay - LPT Orsay Orbital Angular Momentum in QCD June , Dipartimento di Fisica, Universita’ di Pavia, Italy.
1 Transverse weighting for quark correlators QCD workshop, JLAB, May 2012 Maarten Buffing & Piet Mulders
Generalized Transverse- Momentum Distributions Cédric Lorcé Mainz University Germany Barbara Pasquini Pavia University Italy In collaboration with:
Spin Azimuthal Asymmetries in Semi-Inclusive DIS at JLAB  Nucleon spin & transverse momentum of partons  Transverse-momentum dependent distributions.
Chiral-even and odd faces of transverse Sum Rule Trieste(+Dubna), November Oleg Teryaev JINR, Dubna.
May 18-20, 2005 SIR05 JLab 1 P ? Dependence of SSA -- from nonpert. to pert. Feng Yuan, RBRC, Brookhaven National Laboratory References: Ji, Ma, Yuan,
Cédric Lorcé IFPA Liège Multidimensional pictures of the nucleon (3/3) June 30-July 4, 2014, LPT, Paris-Sud University, Orsay, France Second International.
Strangeness and Spin in Fundamental Physics Mauro Anselmino: The transverse spin structure of the nucleon Delia Hasch: The transverse spin structure of.
Wigner Distributions and light-front quark models Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Feng Yuan Xiaonu Xiong IPN.
Generalized TMDs of the Proton Barbara Pasquini Pavia U. & INFN, Pavia in collaboration with Cédric Lorcé Mainz U. & INFN, Pavia.
大西 陽一 (阪 大) QCDの有効模型に基づく光円錐波動関数を用い た 一般化パートン分布関数の研究 若松 正志 (阪大)
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
0 Simonetta Liuti University of Virginia Structure of Nucleons and Nuclei Workshop Como, June 10 th- 14 th, 2013 N&N-StructureSimonetta Liuti Generalized.
EIC, Nucleon Spin Structure, Lattice QCD Xiangdong Ji University of Maryland.
International Workshop on Transversity: New Developments in Nucleon Spin Structure June 2004 Color Gauge Invariance in Hard Processes Vrije Universiteit.
Cédric Lorcé IPN Orsay - LPT Orsay Introduction to the GTMDs and the Wigner distributions June , Palace Hotel, Como, Italy.
Wigner distributions and quark orbital angular momentum Cédric Lorcé and May , JLab, Newport News, VA, USA.
OAM in transverse densities and resonances Cédric Lorcé and 09 Feb 2012, INT, Seattle, USA INT Workshop INT-12-49W Orbital Angular Momentum in QCD February.
Single spin asymmetries in pp scattering Piet Mulders Trento July 2-6, 2006 _.
GPD and underlying spin structure of the Nucleon M. Wakamatsu and H. Tsujimoto (Osaka Univ.) 1. Introduction Still unsolved fundamental puzzle in hadron.
Transverse-Momentum Distributions and spherical symmetry Cédric Lorcé Mainz University Germany in collaboration with Barbara Pasquini Pavia University.
Relation between TMDs and PDFs in the covariant parton model approach Relation between TMDs and PDFs in the covariant parton model approach Petr Zavada.
Nucleon spin decomposition at twist-three Yoshitaka Hatta (Yukawa inst., Kyoto U.) TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Proton spin structure in phase-space May 17, FSU Alumni Center, Tallahassee, Florida, USA Cédric Lorcé CPhT Baryons May 2016 Florida State University.
Structure functions are parton densities P.J. Mulders Vrije Universiteit Amsterdam UIUC March 2003 Universality of T-odd effects in single.
Xiangdong Ji U. Maryland/ 上海交通大学 Recent progress in understanding the spin structure of the nucleon RIKEN, July 29, 2013 PHENIX Workshop on Physics Prospects.
A sideways look into the proton Transverse momentum and transverse spin in QCD Alessandro Bacchetta.
Gluon orbital angular momentum in the nucleon
Nucleon spin decomposition
Quantum imaging of the proton via Wigner distributions
Sep 21st 2015, INFN Frascati National Laboratories, Frascati, Italy
June 28, Temple University, Philadelphia, USA
May , JLab, Newport News, VA, USA
Probing the gluon Wigner distribution in diffractive dijet production
Wigner, Husimi and GTMD at small-x
Theory : phenomenology support 12 GeV
Accessing the gluon Wigner distribution in ep and pA collisions
Neutron Transverse Spin Structure
Measurements of quark transversity and orbital motion in hard scattering Yoshiyuki Miyachi Tokyo Institute of Technology.
Structure and Dynamics of the Nucleon Spin on the Light-Cone
3/19/20181 Nucleon Spin: Final Solution at the EIC Feng Yuan Lawrence Berkeley National Laboratory.
Strangeness and Spin in Fundamental Physics
Quark’s angular momentum densities in position space
August 29, Riken Tokyo Office, Tokyo, Japan
September 29th, IPNO, Orsay
Semi-inclusive DIS at 12 GeV
Can We Learn Quark Orbital Motion from SSAs?
Transverse Momentum Dependent Parton Distributions
Unique Description for SSAs in DIS and Hadronic Collisions
The transverse spin structure of the nucleon
light-cone (LC) variables
TMDs in nuclei Jian Zhou Temple University
高能物理学会第八届全国会员代表大会暨学术年会
Deeply Virtual Neutrino Scattering at Leading Twist
Unique Description for Single Transverse Spin Asymmetries
Unifying the Mechanisms for SSAs in Hard Process
Single spin asymmetries in semi-inclusive DIS
Presentation transcript:

June 25 2013, Dipartimento di Fisica, Universita’ di Pavia, Italy Parton Wigner Distributions of the nucleon Cédric Lorcé IPN Orsay - LPT Orsay June 25 2013, Dipartimento di Fisica, Universita’ di Pavia, Italy

The outline Zoo of parton distribution functions Physical interpretation Wigner distributions and OAM Model calculations Conclusions

The outline Zoo of parton distribution functions Physical interpretation Wigner distributions and OAM Model calculations Conclusions

The charges Charges Depends on : Polarization Vector Axial Tensor Parton number Axial Parton helicity Tensor Parton transversity Charges

The parton distribution functions (PDFs) Depends on : Polarization Longitudinal momentum (fraction) DIS PDFs PDFs Charges

The form factors (FFs) PDFs FFs Charges Depends on : Polarization Longitudinal momentum (fraction) Momentum transfer Elastic scattering PDFs FFs FFs Charges

The generalized PDFs (GPDs) Depends on : Polarization Longitudinal momentum (fraction) Momentum transfer GPDs DVCS PDFs FFs GPDs Charges

The transverse momentum-dependent PDFs (TMDs) Depends on : Polarization Longitudinal momentum (fraction) Momentum transfer Transverse momentum No direct connection TMDs FFs PDFs Charges GPDs SIDIS TMDs

The generalized TMDs (GTMDs) Depends on : GTMDs Polarization Longitudinal momentum (fraction) Momentum transfer Transverse momentum TMDs GPDs ??? PDFs FFs GTMDs Charges

The complete zoo GTMDs TMDs TMFFs GPDs TMCs PDFs FFs Charges Depends on : GTMDs Polarization Longitudinal momentum (fraction) Momentum transfer Transverse momentum TMDs TMFFs GPDs ??? TMCs PDFs FFs GTMDs Charges [C.L., Pasquini, Vanderhaeghen (2011)]

The double parton scattering Depends on : Polarization Longitudinal momentum (fraction) Momentum transfer Transverse momentum Inter-parton distance DPDFs DPDFs [Diehl, Ostermeier, Schäfer (2012)] [Thürman, Master thesis (2012)]

The outline Zoo of parton distribution functions Physical interpretation Wigner distributions and OAM Model calculations Conclusions

The physical interpretation Initial/final Average/difference Position Momentum Fourier-conjugated variables

The physical interpretation [Ernst, Sachs, Wali (1960)] [Sachs (1962)] Breit frame Non-relativistic ! Position w.r.t. the CM Lorentz contraction Creation/annihilation of pairs

The physical interpretation [Soper (1977)] [Burkardt (2000)] Drell-Yan frame Position w.r.t. the center of momentum Lorentz contraction Creation/annihilation of pairs

The physical interpretation Dirac matrix ~ quark polarization Quark Wigner operator Wilson line Canonical momentum Either fix the gauge such that , i.e. work with + boundary condition Or split the Wilson line to form Dirac variables

The physical interpretation Quark Wigner operator Fixed light-front time No need for time-ordering ! Non-relativistic Wigner distribution [Ji (2003)] [Belitsky, Ji, Yuan (2004)] 3+3D Relativistic Wigner distribution [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] 2+3D GTMDs

The phase-space picture GTMDs 2+3D TMDs GPDs 0+3D 2+1D PDFs FFs 0+1D 2+0D Charges

The outline Zoo of parton distribution functions Physical interpretation Wigner distributions and OAM Model calculations Conclusions

Heisenberg’s uncertainty relations The phase-space distribution [Wigner (1932)] [Moyal (1949)] Wigner distribution Galilei covariant Either non-relativistic Or restricted to transverse position Probabilistic interpretation Heisenberg’s uncertainty relations Expectation value Position space Momentum space Phase space

Unpolarized quark density The quark orbital angular momentum [C.L., Pasquini (2011)] GTMD correlator Wigner distribution Orbital angular momentum Unpolarized quark density Parametrization [Meißner, Metz, Schlegel (2009)]

The parametrization @ twist-2 and x=0 [Meißner, Metz, Schlegel (2009)] GTMDs Quark polarization Nucleon polarization TMDs GPDs Monopole Dipole Quadrupole

The path dependence Orbital angular momentum Canonical Kinetic [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] [Ji, Xiong, Yuan (2012)] [C.L. (2013)] Orbital angular momentum Reference point [Jaffe, Manohar (1990)] [Ji (1997)] Canonical Kinetic FSI ISI Drell-Yan SIDIS

The proton spin decompositions [C.L. (2013)] [Leader, C.L. (in preparation)] Reviews : Canonical Kinetic [Jaffe, Manohar (1990)] [Ji (1997)] Pros: Satisfies canonical relations Complete decomposition Pros: Gauge-invariant decomposition Accessible in DIS and DVCS Cons: Gauge-variant decomposition Missing observables for the OAM Cons: Does not satisfy canonical relations Incomplete decomposition News: Gauge-invariant extension News: Complete decomposition [Chen et al. (2008)] [Wakamatsu (2009,2010)] OAM accessible via Wigner distributions [C.L., Pasquini (2012)] [C.L., Pasquini, Xiong, Yuan(2012)] [Hatta (2012)]

The outline Zoo of parton distribution functions Physical interpretation Wigner distributions and OAM Model calculations Conclusions

The light-front overlap representation [C.L., Pasquini, Vanderhaeghen (2011)] Overlap representation Momentum Polarization Light-front quark models Wigner rotation

The model results [C.L., Pasquini (2011)] Wigner distribution of unpolarized quark in unpolarized nucleon favored disfavored Left-right symmetry No net quark OAM

The model results [C.L., Pasquini (2011)] Distortion induced by the nucleon longitudinal polarization Proton spin u-quark OAM d-quark OAM

The model results [C.L., Pasquini, Xiong, Yuan (2012)] Average transverse quark momentum in a longitudinally polarized nucleon « Vorticity »

The model results [C.L., Pasquini (2011)] Distortion induced by the quark longitudinal polarization Quark spin u-quark OAM d-quark OAM

The model results Quark spin-nucleon spin correlation Proton spin [C.L., Pasquini (2011)] Quark spin-nucleon spin correlation Proton spin u-quark spin d-quark spin

The model results [C.L., Pasquini (2011)]

The emerging picture Longitudinal Transverse [Burkardt (2005)] [Barone et al. (2008)] [C.L., Pasquini (2011)]

No gluons and not QCD EOM ! The canonical and kinetic OAM Quark canonical OAM [C.L., Pasquini (2011)] [C.L., Pasquini, Xiong, Yuan (2012)] [Hatta (2012)] Quark naive canonical OAM [Burkardt (2007)] [Efremov et al. (2008,2010)] [She, Zhu, Ma (2009)] [Avakian et al. (2010)] [C.L., Pasquini (2011)] Model-dependent ! Quark kinetic OAM [Ji (1997)] [Penttinen et al. (2000)] [Kiptily, Polyakov (2004)] [Hatta (2012)] Pure twist-3 No gluons and not QCD EOM ! but [C.L., Pasquini (2011)]

The conclusions Twist-2 parton distributions provide multidimensional pictures of the nucleon Relativistic phase-space distributions exist. Open question: how to access them? Both kinetic (Ji) and canonical (Jaffe-Manohar) are measurable (twist-2 and twist-3) Model calculations can test spin sum rules

Backup slides

OAM and origin dependence Naive Relative Intrinsic Depends on proton position Momentum conservation Transverse center of momentum Physical interpretation ? Equivalence Intrinsic Naive Relative

Simultaneous eigenstates of Overlap representation Fock expansion of the proton state Fock states Simultaneous eigenstates of Momentum Light-front helicity

Light-front wave functions Overlap representation Light-front wave functions Eigenstates of parton light-front helicity Eigenstates of total OAM gauge Proton state Probability associated with the N,b Fock state Normalization

Fock-state contributions Overlap representation Fock-state contributions [C.L., Pasquini (2011)] [C.L. et al. (2012)] Kinetic OAM GPDs Naive canonical OAM TMDs Canonical OAM GTMDs

DVCS vs. SIDIS DVCS SIDIS Factorization Incoherent scattering FFs GPDs TMDs Factorization Compton form factor Cross section hard soft process dependent perturbative « universal » non-perturbative

GPDs vs. TMDs GPDs TMDs Correlator Correlator ISI FSI Off-forward! Dirac matrix Wilson line GPDs TMDs Correlator Correlator Off-forward! Forward! ISI FSI e.g. DY e.g. SIDIS

LC helicity and canonical spin [C.L., Pasquini (2011)] LC helicity Canonical spin Nucleon polarization Quark polarization Quark polarization Nucleon polarization

Interesting relations *=SU(6) Model relations Linear relations Quadratic relation Flavor-dependent * * * * * Flavor-independent * * * * * * * Bag LFcQSM LFCQM S Diquark AV Diquark Cov. Parton Quark Target [Jaffe, Ji (1991), Signal (1997), Barone & al. (2002), Avakian & al. (2008-2010)] [C.L., Pasquini, Vanderhaeghen (2011)] [Pasquini & al. (2005-2008)] [Ma & al. (1996-2009), Jakob & al. (1997), Bacchetta & al. (2008)] [Ma & al. (1996-2009), Jakob & al. (1997)] [Bacchetta & al. (2008)] [Efremov & al. (2009)] [Meißner & al. (2007)]

(reduces to Melosh rotation in case of FREE quarks) Geometrical explanation [C.L., Pasquini (2011)] Preliminaries Conditions: Quasi-free quarks Spherical symmetry Wigner rotation Light-front helicity Canonical spin (reduces to Melosh rotation in case of FREE quarks)

Geometrical explanation Axial symmetry about z

Geometrical explanation Axial symmetry about z