TORQUE DEFINED a Force applied a system restricted to moving in a circular path causes a system/body to rotate the Point of Application is eccentric T.

Slides:



Advertisements
Similar presentations
Torque Rotational Equilibrium Rotational Dynamics
Advertisements

Circular and Rotational Motion
Torque, Equilibrium, and Stability
1. mring= mdisk, where m is the inertial mass.
KINE 3301 Biomechanics of Human Movement Computing Torque Chapter 11.
Chapter 2: The laws of motion, Part II
Torque Rotational Motion. Torque  Forces that cause objects to rotate  Two Characteristics that contribute to the effectiveness of torque: Magnitude.
DETERMINATION OF TORQUE
College Physics, 7th Edition
Rotational Dynamics Chapter 9.
Torque and Rotational Equilibrium
 Point at which all other points on the object rotate around  During motion the CM will move in the same path that a simple particle would move if subjected.
Mechanical Force Notes
Chapter 10: Rotation. Rotational Variables Radian Measure Angular Displacement Angular Velocity Angular Acceleration.
Chapter 13: Equilibrium and Human Movement
Mechanics and Materials Forces Displacement Deformation (Strain) Translations and Rotations Stresses Material Properties.
KINESIOLOGY دکترامیر هوشنگ واحدی متخصص طب فیزیکی و توانبخشی قسمت 3.
College of Physics Science & Technology YANGZHOU UNIVERSITYCHINA Chapter 11ROTATION 11.1 The Motion of Rigid Bodies Rigid bodies A rigid body is.
4 FUNCTIONS of MACHINES 1. Balance 2 or more Forces 2. Force advantage 3. Linear ROM and/or Speed 4. Change direction of F motive.
Rotation Rotational Variables Angular Vectors Linear and Angular Variables Rotational Kinetic Energy Rotational Inertia Parallel Axis Theorem Newton’s.
Chapter 8 Rotational Motion.
Biomechanics Examines the internal and external forces acting on the human body and the effects produced by these forces Aids in technique analysis and.
Equilibrium and Human Movement
Chapter 8: Rotational Kinematics Essential Concepts and Summary.
Chapter 8 Rotational Motion.
Angular Kinematics of Human Movement
Rotational Mechanics. Rotary Motion Rotation about internal axis (spinning) Rate of rotation can be constant or variable Use angular variables to describe.
Rotational Motion and Equilibrium
8.2 Rotational Dynamics How do you get a ruler to spin on the end of a pencil? Apply a force perpendicular to the ruler. The ruler is the lever arm How.
Torque is a twisting force. It’s magnitude is r x F. Where r is the “moment arm” or distance to the axis of rotation. You can increase torque by just increasing.
Angular Motion Chapter 10. Figure 10-1 Angular Position.
Angular Kinetics of Human Movement
Chapters 7 & 8 The Law of Gravity and Rotational Motion.
Kinematics Variables Time: temporal characteristics of a performance, either of the total skill or its phases Displacement: length and direction of the.
Counterclockwise Turning Effect Clockwise Turning Effect In our last lab we found that the “turning effect” depends on the force and the lever arm. Where.
Rotational or Angular Motion. When an object ’ s center of mass moves from one place to another, we call it linear motion or translational motion.
TORQUE DEFINED a Force applied a system restricted to moving in a circular path causes a system/body to rotate the Point of Application is eccentric T.
Cross product Torque Relationship between torque and angular acceleration Problem solving Lecture 21: Torque.
Rotational Motion & Torque. Angular Displacement Angular displacement is a measure of the angle a line from the center to a point on the outside edge.
1 ~ Through the Looking-Glass by Lewis Carroll 2 Linear Motion of a Segment translation of the body such that its orientation in space does not change.
Forces and Motion in Two Dimensions Circular Motion.
Torque On A Current Loop In A Uniform Magnetic Field
Rotations Free of Support
Angular Kinematics of Human Movement
Circular Motion.
Torque.
The Science of Biomechanics
Circular Motion.
Angular Vectors.
Angular Momentum.
Rotational Inertia and Torque
Torque.
Circular Motion Torque.
Equilibrium and Human Movement
Angular Kinetics of Human Movement
HW #7 cancelled HW #8 available later today
VECTOR FORMULAS  A vector is an object that has both a magnitude and a direction. In Geometrically, we can picture a vector as a directed line segment,
Angular Kinematics of Human Movement
Physics: Principles with Applications, 6th edition
8-1 Angular Quantities In purely rotational motion, all points on the object move in circles around the axis of rotation (“O”). The radius of the circle.
Basic Biomechanics, (5th edition) by Susan J. Hall, Ph.D.
Chapter 11 - Rotational Dynamics
Chapter 2: The laws of motion, Part II
Physics: Principles with Applications, 6th edition
Instructor: Dr. Tatiana Erukhimova
Vectors & Equilibrium Sara sultan 07/04/2019.
Angular Kinetics: Torques
The Law of Gravity and Rotational Motion
Chapter 8 Rotational Equilibrium and Dynamics
College Physics, 7th Edition
Presentation transcript:

TORQUE DEFINED a Force applied a system restricted to moving in a circular path causes a system/body to rotate the Point of Application is eccentric T = F x FA

MUSCLE TORQUES Magnitude - product of F x FA Direction - angle of pull on bone Line of Action - vector direction Point of Application - attachment to bone

FA: FORCE ARM shortest distance from axis of rotation to the line of action of the applied Force  (perpendicular) to line of action

TEETER-TOTTER Axis of Rotation 2 Forces 2 Force Arms

FIG E.8 Page 116 of textbook

FIG 9-30 “Basic Biomechanics” 3rd Edition Susan J. Hall

CALCULATING TORQUE Force measured in Newtons [4.45N = 1Lb.] Force Arm measured in meters Torque measured in Newton meters [Nm]

FIG E.11 page 118 sum up all Torques on each side of axis side of axis with the larger  of T determines direction of movement

Angular Motion Vectors there are both kinetic and kinematic vectors A vector is represented by a straight line arrow symbol the length of the arrow is the magnitude the orientation of the arrow is the direction to get a straight line vector for angular motion, the right hand thumb rule is used

RIGHT-HAND THUMB RULE method of determining vector direction for angular motion curve fingers of right hand in the direction of the Torque right thumb points in vector direction of the motion,  to the actual direction of the spin

Right-Hand Thumb points in vector direction FIG 15.9 on page 506 FIG 15.10 on page 507

CENTER of BUOYANCY the location of the C of G of the volume of water displaced by a immersed body body’s CB must be aligned with body’s CG for floating to occur