Reaction Acidity Synthesis

Slides:



Advertisements
Similar presentations
8. Alkynes: An Introduction to Organic Synthesis
Advertisements

Chapter 61 Reactions of Alkynes. Introduction to Multistep Synthesis Chapter 6.
Alkynes: An Introduction to Organic Synthesis Based on McMurry’s Organic Chemistry, 7 th edition, Chapter 8.
Chapter 9 Alkynes: An Introduction to Organic Synthesis
205 Chapter 9: Alkynes 9.1: Sources of Alkynes (please read) 9.2: Nomenclature Systematic Nomenclature: Prefix-Parent-Suffix Naming Alkynes: Suffix: -yne.
Chapter 11 Alkynes.
Alkynes Alkynes contain a carbon—carbon triple bond. Terminal alkynes have the triple bond at the end of the carbon chain so that a hydrogen atom is directly.
1 Alkynes contain a carbon-carbon triple bond. An alkyne has the general molecular formula C n H 2n−2, giving it four fewer hydrogens than the maximum.
Organic Chemistry, 6th Edition L. G. Wade, Jr.
Physical and Chemical Properties and Reactions of Alkenes and Alkynes CHAPTER NINE TERRENCE P. SHERLOCK BURLINGTON COUNTY COLLEGE 2004 CHE-240 Unit 3.
Chapter 51 Reactions of Alkenes and Alkynes. Chapter 5.
Alkynes.
Alkenes Addition Reactions Synthesis. Addition of HBr or HCl Markovnikov Addition.
Alkenes Properties Nomenclature Addition Reactions.
Alkynes Reaction Acidity Synthesis.  Complex of Acetylene  Bonds.
Alkynes. Hydrocarbons with a carbon–carbon triple bond are alkynes. Noncyclic alkynes have the molecular formula C n H 2n-2. Acetylene (HC≡ CH) is the.
Introduction Alkynes contain a triple bond. General formula is CnH2n-2
Dr Manal F. AbouTaleb Alkynes .1 Introduction
CH 8 Alkynes: An Introduction to Organic Synthesis
Chapter 8: Alkynes Alkynes: An Introduction to Organic Synthesis.
© 2011 Pearson Education, Inc. 1 Organic Chemistry 6 th Edition Paula Yurkanis Bruice Chapter 6 The Reactions of Alkynes An Introduction to Multistep.
Structure, Reactivity and Synthesis
Alkynes. Alkynes are molecules that incorporate a C  C triple bond.
John E. McMurry Paul D. Adams University of Arkansas Lecture 11 (Chapter 9) Alkyne Reactions.
ALKENE AND ALKYNE REACTIONS, CONTINUED Dr. Clower CHEM 2411 Spring 2014 McMurry (8 th ed.) sections , , , , 8.10, 8.12,
Unsaturated Hydrocarbons
ALKYNES - Chapter 7 nomenclature - (chapt 5), structure, classification acidity of terminal acetylenes - (chapt 4) alkylation prep - dehydrohalogenation.
IV. Oxidation Three types A. Epoxidation B. Hydroxylation C. Oxidative cleavage.
Puan Rozaini Abdullah School of Bioprocess Engineering.
Unsaturated Hydrocarbons II: Alkynes
Chapter 9 Alkynes: An Introduction to Organic Synthesis
CHAPTER 7: REACTION MECHANISMS CHEM171 – Lecture Series Seven : 2012/01 Reaction mechanisms involve the movement of electrons 1-electron 2-electrons BOND.
Physical and Chemical Properties and Reactions of Alkenes and Alkynes.
Alkynes Introduction—Structure and Bonding
10.4 Preparation of Alkynes
Alkynes Alkynes Nomenclature Synthesis Reactions.
Chapter 9 Alkynes: An Introduction to Organic Synthesis
Electrophilic Substitution Reactions
Alkynes: An Introduction to Organic Synthesis
Chemistry Department, College of Science, King Saud University
Chapter 9 Alkynes: An Introduction to Organic Synthesis
Unsaturated Hydrocarbons
Alkynes Unit 8.
Organic Chemistry Second Edition Chapter 10 David Klein Alkynes
Organic Chemistry Third Edition Chapter 9 David Klein Alkynes
Alkynes Unit 9.
9. Alkynes: An Introduction to Organic Synthesis
Biological Activity Nomenclature Preparation Reactions
Addition Reactions Synthesis
Organic Chemistry, First Edition Janice Gorzynski Smith
Organic chemistry sh.javanshir
8. Alkynes: An Introduction to Organic Synthesis
Chapter 3: Alkenes and Alkynes
Properties Nomenclature Preparation Reactions Synthesis
Chapter 9 Alkynes: An Introduction to Organic Synthesis
CH 2-2 Hydrogen Deficiency & Constitutional Isomers of Hydrocarbons
8. Alkynes: An Introduction to Organic Synthesis
Alkynes: An Introduction to Organic Synthesis
Reaction Acidity Synthesis
Unsaturated Hydrocarbons II: Dienes and Alkynes
Unsaturated Hydrocarbons II: Dienes and Alkynes
Unsaturated Hydrocarbons II: Alkynes
Alkynes.
Alkynes. CnH2n-2 C2H2 H:C:::C:H H—C  C—H sp => linear, 180o
Chapter 9 Alkynes: An Introduction to Organic Synthesis
8. Alkynes: An Introduction to Organic Synthesis
Alkynes: An Introduction to Organic Synthesis
Alkynes. CnH2n-2 C2H2 H:C:::C:H H—C  C—H sp => linear, 180o
8. Alkynes: An Introduction to Organic Synthesis
Alkyne and Reactions Nomenclature of alkynes
Presentation transcript:

Reaction Acidity Synthesis Alkynes Reaction Acidity Synthesis

s-Complex of Acetylene p-Bonds

Hydrocarbon Comparison

Alkyne Nomenclature

Enes with Ynes

Endiyne Antitumor Agents

Catalytic Hydrogenation

Lindlar’s Catalyst

H2 on a Poisoned Catalyst Prevents Over-Reduction cis Alkenes

Dissolved Lithium in NH3 trans Alkenes

Addition of HX

Br2 Addition

Oxymercuration Hydration Markovnikov

Enol – Keto Tautomerization Intermolecular

Oxymercuration Mechanism

Hydroboration Hydration Anti-Markovnikov

Hydroboration Mechanism

Draw the Products

Ozonolysis

Acidity of Terminal Alkynes

Acetylide Formation

Alkylation of Acetylide Ions Homologations using SN2 rxn

Multi-step Syntheses

Retrosynthetic Analysis Begin with the Product

Fill in the Reagents

How Many Steps?

5 Steps

An unknown compound (A) has a formula of C11H14 An unknown compound (A) has a formula of C11H14. Treatment of A with H2/Pd-carbon gives B (C11H20). Treatment of A with H2 on a Lindlar catalyst gives C (C11H16). Ozonolysis of C followed by workup with Zn, HOAc affords formaldehyde and the tricarbonyl compound shown below.

Schematic of the Problem

An initial approach to this problem is to determine the number of degrees of unsaturation in each of the molecules A, B, and C. When A (C11H14, 5o unsat.) is hydrogrenated, B (C11H20, 2o unsat.) is formed. That means that 3 p bonds reacted (3 mol. equivalents) to form B. When A is treated with H2 over a Lindlar (poisoned) catalyst, 1 mol equiv. of H2 reacts. Since this reaction is specific for the reduction of alkynes to alkenes, 2 of the 3 p bonds in A are in the form of a triple bond. The remaining p bond must be an alkene. We have accounted for three of the five degrees of unsaturation in A, therefore the other two must be rings since they do not react with H2.

Propose Structures for A, B, and C