Reference Solar Spectrum Considerations

Slides:



Advertisements
Similar presentations
Photoelectrons as a Tool to Evaluate Spectral and Temporal Variations of Solar EUV Irradiance Models W.K. Peterson 1, J.M. Fontenla 1, T.N. Woods 1, P.G.
Advertisements

Real-Time Reconstructions of the Solar Irradiance for Space Weather Applications in the SOTERIA Project Framework 7th European Space Weather Week, November.
Microwave fluxes in the recent solar minimum H. Hudson, L. Svalgaard, K. Shibasaki, K. Tapping The time series of solar microwave flux traditionally is.
Institut für Umweltphysik Universität Heidelberg High resolution spectroscopy of the Oxygen A-band in zenith-scattered light; Implications for cloudy sky.
SOLAR IRRADIANCE VARIABILITY OF RELEVANCE FOR CLIMATE STUDIES N.A. Krivova.
ISSI, October 11-15, 2004 Synthesis of the Solar Spectrum including future plans Peter Fox HAO/NCAR Work partly funded by NSF/RISE and.
1 G. Cessateur, T. Dudok de Wit, M. Kretzschmar, L. Vieira LPC2E, University of Orléans, France J. Lilensten LPG, University of Grenoble, France New Models.
The EUV spectral irradiance of the Sun from minimum to maximum Giulio Del Zanna Department of Space and Climate Physics University College London Vincenzo.
ASIC3 WorkshopLandsdowne, VA May 16-18, 2006 J. Harder Page 1 Calibration Status of the Solar Irradiance Monitor (SIM) : The Present and the Future Jerald.
2008/10/21 J. Fontenla, M Haberreiter LASP – Univ. of Colorado NADIR MURI Focus Area.
Langematz, Oberländer, Kunze Ulrike Langematz, Sophie Oberländer and Markus Kunze Institut für Meteorologie, Freie Universität Berlin, Germany The effects.
Solar Irradiance Variability Rodney Viereck NOAA Space Environment Center Derived Total Solar Irradiance Hoyt and Schatten, 1993 (-5 W/m 2 ) Lean et al.,
TOSCA Workshop on SSI Variability and Climate Modeling14 May 2012 Pilewskie - 1 Current and Future Measurements of Total and Spectral Solar Irradiance.
Modeling the Solar EUV irradiance
Multi-satellite Solar Spectral Irradiance Composite (MUSSIC) M. Snow, J. Machol, & E. Richard University of Colorado LASP & CIRES
SCILOV10 FP Meeting SCIAMACHY irradiance validation SCILOV10 FP, Frascati, 26/27 February, 2014 M. Weber and S.Noël Institute of Environmental Physics.
Remote Sensing Basics | August, Calibrated Landsat Digital Number (DN) to Top of Atmosphere (TOA) Reflectance Conversion Richard Irish - SSAI/GSFC.
ESWW4, Brussels, Novembre 2006 Retrieving the EUV solar spectrum from a selected set of lines for space weather purposes: A review of theories, models.
Retrieving the EUV solar spectrum from a selected set of lines for space weather purposes Jean Lilensten (LPG, Grenoble) Thierry Dudok de Wit (LPCE, Orléans)
March total ozone from GOME/SCIAMACHY –High inter-annual ozone variability during winter/spring NH –Combined effect from ozone transport and polar ozone.
Comparison of Solar EUV Irradiance Measurements from CDS and TIMED/EGS W. T. Thompson L3 Communications EER, NASA GSFC P. Brekke ESA Space Science Department.
Photoelectrons as a tool to evaluate Solar EUV and XUV model irradiance spectra on Solar rotation time scales W.K. Peterson 1, T.N. Woods 1, J.M. Fontenla.
Solar Irradiance Variability and Climate
Assimilation of solar spectral irradiance data within the SOLID project Margit Haberreiter PMOD/WRC, Davos, Switzerland.
Solar Irradiance (Swiss contributions to ILWS) 4th ILWS general meeting, Beijing, June 22-23, 2006 Werner Schmutz, PMOD/WRC, Switzerland (representing.
Comparison of Magnesium II Core-to-Wing Ratio Measurements J. Machol 1,2*, M. Snow 3, R. Viereck 4, M. Weber 5, E. Richard 3, L. Puga 4 1 NOAA/National.
EUV Spectral Synthesis and Reconstruction Margit Haberreiter, PMOD/WRC, Davos, Switzerland Cis Verbeeck, Veronique Delouille, Rami Qahwaji, Ilaria Ermolli.
The EUV spectral irradiance of the Sun from 1997 to date Giulio Del Zanna PPARC/STFC Adv. Fellow DAMTP, CMS, University of Cambridge Vincenzo Andretta.
SOLAR VARIABILITY AND CLIMATE. HAS THE EARTH WARMED? Climatic Research Unit, UK.
DEVELOPING A SOLAR RADIOMETRIC CALIBRATION SYSTEM USING SPECTRAL SYNTHESIS. Peter Fox (HAO/NCAR) We present quantitative information on how we estimate.
Cosmic Ray Intensity Variation and Its Connection with the Total and Spectral Solar Irradiance Gigolashvili Marina, Kapanadze Natela Georgian National.
SOLSTICE II -- Magnesium II M. Snow 1*, J. Machol 2,3, R. Viereck 4, M. Weber 5, E. Richard 1 1 Laboratory for Atmospheric and Space Physics, University.
Modeling the UV/EUV and its relevance for PROBA2 observations Margit Haberreiter Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center,
SATELLITE REMOTE SENSING OF TERRESTRIAL CLOUDS Alexander A. Kokhanovsky Institute of Remote Sensing, Bremen University P. O. Box Bremen, Germany.
Recent Solar Irradiance Data From SBUV/2 and OMI Matthew DeLand and Sergey Marchenko Science Systems and Applications, Inc. (SSAI) SOLID WP-2 Workshop.
Calculation of the Irradiance variations in the UV and extreme UV Margit Haberreiter PMOD/WRC, Davos, Switzerland IPC XI Sept 26 – Oct 15, 2010.
High resolution solar reference spectrum Robert Voors KNMI.
WSM Whole Sun Month Sarah Gibson If the Sun is so quiet, why is the Earth still ringing?
Data Processing Flow Chart Start NDVI, EVI2 are calculated and Rank SDS are incorporated Integrity Data Check: Is the data correct? Data: Download a) AVHRR.
ILWS, DLR, Dr. Frings ILWS Related Activities in Germany Beijing, August 29, 2011.
1 Welcome / Introduction STCE workshop – BIRA-IASB/STCE, March 10-12, 2015, Brussels, Belgium STCE - Workshop Six years of SOLAR/SOLSPEC mission on ISS.
SORCE - Spectral Irradiance Monitor Stéphane Béland 1, J. Harder 1, M. Snow 1, G. Thuillier 2 1 LASP – University of Colorado Boulder 2 LATMOS-CNRS SOSLPEC.
1 4t. Solar Ultraviolet Spectra Project L. Flynn (NOAA), M. Deland (SSAI – NASA), J. Niu (SRG NOAA), C. Pan (ESSIC UMD)
Solar variability and its impact on climate Laura Balmaceda 4 th El Leoncito Solar Physics School November, 2008.
SOLAR SVW bridging: outcome SOLAR Bridging of SVWs in Nov/Dec 2012 Outcome POIWG 33 – Huntsville, AL January 2013.
Surface Characterization 4th Annual Workshop on Hyperspectral Meteorological Science of UW MURI And Beyond Donovan Steutel Paul G. Lucey University of.
BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE INSTITUT D’AERONOMIE SPATIALE DE BELGIQUE BELGIAN INSTITUTE FOR SPACE AERONOMY BELGISCH INSTITUUT VOOR RUIMTE-AERONOMIE.
Simulated GOLD Observations of Atmospheric Waves
Non-LTE atmosphere calculations of the solar spectrum
The Impact of Small-Scale Magnetism on Solar Variability
Hiroko Watanabe (Kyoto Univ.)
Deriving the Instrument Transfer Function from OMI Solar Observations and Its Implications for Ozone Retrievals Kang Sun, Xiong Liu, Zhaonan Cai, Guanyu.
Solar reference spectra from the Solspec instruments
VI. Forecasting Solar EUV/UV Radiation – EUV spectral synthesis
LYRA on PROBA2 and other PMOD/WRC irradiance experiments
INTRODUCING A cloud detector USING global horizontal irradiances in UV and PAR in Thessaloniki, Greece. Zempila M.M.1,2, Taylor M. 2,*, Fountoulakis I.2,
Absolute calibration of sky radiances, colour indices and O4 DSCDs obtained from MAX-DOAS measurements T. Wagner1, S. Beirle1, S. Dörner1, M. Penning de.
Reference Solar Irradiance Spectrum
Mina Kang1, Myoung-Hwan Ahn1, Quintus Kleipool2 and Pepijn Veefkind2
UVN solar reference and model quality w.r.t. GOME-2/Metop
GSICS/CEOS web meeting on Reference Solar Spectrum
Reference Solar Irradiance Spectrum
The EUV spectral irradiance of the Sun from 1997 to date
Resolution.
Solar spectrum and absorption profiles of chlorophyll and bacteriochlorophyll pigments Solar spectrum and absorption profiles of chlorophyll and bacteriochlorophyll.
The GOES EUVS Model: New Operational Spectral Irradiances from GOES-R
Discussion on Solar Spectra for Vis/NIR Calibrations
WGCV IVOS Reference Solar Irradiance Spectrum
Satellite-based climate data records of the surface solar radiation Jörg Trentmann, Uwe Pfeifroth, Steffen Kothe, Vivien Priemer.
Jeffrey Linsky JILA and APAS Solar Focus Group April 12, 2019
Presentation transcript:

Reference Solar Spectrum Considerations Greg Kopp Univ. of Colorado / LASP & Max-Planck-Institut für Sonnensystemforschung

Disclaimer I have no bias and I’m not presenting my “favorite” spectrum I’m presenting an approach to creating a reference spectrum for the community

What Does Community Need? Creating a reference with broad applicability requires addressing diverse community needs Applications include Solar physics (high time cadence; UV spectra) Climate research (long-term variations with solar-cycle stability; accuracy) Atmospheric modeling (UV spectra; seasonal stability) What do users want? Everything! Good spectral resolution Broad spectral range Different solar-activity types

Suggested Approach Use a composite: Reference will require a composite with inputs from several instruments No single instrument provides full spectral range with narrowest spectral resolution Enhance with solar-atmospheric models: NLTE solar-atmospheric models can provide spectral resolution and range not achieved by accurate, space-based instruments But these rely on space-based instruments for absolute accuracy Time-extend with solar-irradiance models: Solar-irradiance models can relate spectra under different temporal and activity conditions Can extend to times when observations were unavailable

Get Beyond Individual(’s) Spectra Dataset Wavelength Resolution Time Range Accuracy Stability Dataset Summary & Reference   Minimum [nm] Maximum [nm] [nm] Minimum Maximum [%] Solar-Cycle [%] 27-Day [%] ATLAS 1 0.5 2,400.0 1992 3.0% Observationally-based composite spectrum of high solar activity ATLAS 3 1994 Observationally-based composite spectrum of low solar activity; used as "standard" spectrum Whole Heliosphere Interval (WHI) 0.1 10-Apr-2008 16-Apr-2008 Space-based observational composite spectrum of quiet Sun at solar minimum; Woods et al., GRL, 2008 SAO2010 200.0 1,001.0 0.04 5.0% Observationally-based composite; Chance, K. & Kurucz, R. L., J. of Quantitative Spectroscopy and Radiative Transfer, 111, #9 Solar Radiation Physical Model (SRPM) 100,000.0 Computationally-based NLTE spectrum of quiet Sun; Fontenla et al., ApJ, 707, 2009, doi: 10.1088/0004-637X/707/1/482 SOLSPEC SOLAR 2 2008 SOLSPEC instrument on ISS at solar minimum; Gerard Thuillier et al., Solar Physics, 2015, 290 (6), doi:10.1007/s11207-015-0704-1 SATIRE 115.0 160,000.0 1.0 1610 present Semi-empirical physical model-based spectrum of Sun; daily values; Krivova et al., 2010, JGR doi:10.1029/2010JA015431 NRLSSI 120.0 Empirical model-based spectrum of Sun; daily values since 1882; Coddington et al., BAMS, 2016, doi:10.1175/BAMS-D-14-00265.1 Code for Solar Irradiance (COSI) Computationally-based NLTE spectrum; Shapiro et al., A&A, 517, 2010, doi:10.1051/0004-6361/200913987 Kurucz Model Spectrum 0.02 Computationally-based NLTE spectrum based on KPNO FTS Need to fill in a table of possible inputs rather than focus on each individually Speakers should provide perspective on their presented spectra for it to be beneficial to group

Dataset Summary & Reference Example Dataset Wavelength Resolution Time Range Accuracy Stability Dataset Summary & Reference   Minimum [nm] Maximum [nm] [nm] Minimum Maximum [%] Solar-Cycle [%] 27-Day [%] ATLAS 1 0.5 2,400.0 1992 3.0% Observationally-based composite spectrum of high solar activity ATLAS 3 1994 Observationally-based composite spectrum of low solar activity; used as "standard" spectrum Whole Heliosphere Interval (WHI) 0.1 10-Apr-2008 16-Apr-2008 Space-based observational composite spectrum of quiet Sun at solar minimum; Woods et al., GRL, 2008 SAO2010 200.0 1,001.0 0.04 5.0% Observationally-based composite; Chance, K. & Kurucz, R. L., J. of Quantitative Spectroscopy and Radiative Transfer, 111, #9 Solar Radiation Physical Model (SRPM) 100,000.0 Computationally-based NLTE spectrum of quiet Sun; Fontenla et al., ApJ, 707, 2009, doi: 10.1088/0004-637X/707/1/482 SOLSPEC SOLAR 2 2008 SOLSPEC instrument on ISS at solar minimum; Gerard Thuillier et al., Solar Physics, 2015, 290 (6), doi:10.1007/s11207-015-0704-1 SATIRE 115.0 160,000.0 1.0 1610 present Semi-empirical physical model-based spectrum of Sun; daily values; Krivova et al., 2010, JGR doi:10.1029/2010JA015431 NRLSSI 120.0 Empirical model-based spectrum of Sun; daily values since 1882; Coddington et al., BAMS, 2016, doi:10.1175/BAMS-D-14-00265.1 Code for Solar Irradiance (COSI) Computationally-based NLTE spectrum; Shapiro et al., A&A, 517, 2010, doi:10.1051/0004-6361/200913987 Kurucz Model Spectrum 0.02 Computationally-based NLTE spectrum based on KPNO FTS Start with SAO2010 Measurement-based high spectral resolution Scale absolute value and spectrally extend with WHI Includes broad community inputs and represents multiple instruments Improve spectral resolution with physics-based model Scale model values to spectrum over instrumental spectral profiles Extend to alternate time domains with solar-irradiance model

Creating a Reference Spectrum – Summary Get a high-level overview of possible input spectra Consolidate summary of spectral range, resolutions, accuracies, times, etc. Identify which spectra provide the best qualities i.e. absolute accuracy, spectral resolution, etc. Combine into a composite spectrum Emphasize accurate absolute value over spectral resolution or range Space-based data have best absolute accuracy Add spectral resolution from physics-based model Physics-based models have best spectral resolution Scale to absolute value from most accurate measurement-based spectra Allow for temporal variations via irradiance models Needed for climate and solar-physics research