Numeric Data Representation V1.0 (21/10/2005) Numeric Data Representation
Numeric Data Representation Use “words” to represent number Write both the digit and the corresponding value Like One thousand three hundred and sixty five Three thousand Arabian Number Represent the corresponding value with its position 1365 30000
Denary Number Made up of digits from 0-9 Adjacent digits have ten times difference 48610=4 x 102+8 x 101 + 6 x 1
Hexadecimal Made up of numeric values from 0-15 A-F used represent 10-15 Adjacent digits have 16 times difference 2BF16 = 2 x 162 + 11 x 161 + 15 x 160
Binary Number Digits made up of 0 and 1 Adjacent digits have two times difference 1010=1 x 23 + 0 x 22 + 1 x 21 + 0 x 20
Conversion( binary and hexadecimal to denary ) 100112 = 1 x 24 + 0 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 5110 13E16 = 1 x 162 + 3 x 161 + 14x 160 = 31810
Conversion( denary to binary) 5110 = 1 x 24 + 0 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 100112 For continuous division, refer to spreadsheet Conversion tools 2 51 25 ......... 1 12 6 3 Answer:10011
Conversion( denary to hexadecimal) 31810 = 1 x 162 + 3 x 161 + 14x 160 = 13E16 For continuous division, refer to spreadsheet Conversion tools 16 318 19 ......... 14 1 3 Answer: 13E
Conversion( binary to hexadecimal) Since 16 = 24, use 0000-1111 to represent 0-A (hexadecimal) From right to left, four in a group. Convert all 0-A 1001 01012 = 9516
Conversion( hexadecimal to binary) use 0000-1111 to represent 0-A (hexadecimal) Each digit in hexadecimal number map to a 4-digit binary number. If not enough 0, pre-pad zero 81F16 = 1000 0001 11112
Binary、Denary、Hexadecimal 0000 1 0001 2 0010 3 0011 4 0100 5 0101 6 0110 7 0111 Denary Binary Hexadecimal 8 1000 9 1001 10 1010 A 11 1011 B 12 1100 C 13 1101 D 14 1110 E 15 1111 F