Bringing order to chaos

Slides:



Advertisements
Similar presentations
Realistic photometric redshifts Filipe Batoni Abdalla.
Advertisements

K-NEAREST NEIGHBORS AND DECISION TREE Nonparametric Supervised Learning.
Spitzer Observations of 3C Quasars and Radio Galaxies: Mid-Infrared Properties of Powerful Radio Sources K. Cleary 1, C.R. Lawrence 1, J.A. Marshall 2,
Compiled quasar catalog from LAMOST DR1
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
UV to Mid-IR SEDs of Low Redshift Quasars Zhaohui Shang (Tianjin Normal University/University of Wyoming) Michael Brotherton, Danny Dale (University of.
Star-Formation in Close Pairs Selected from the Sloan Digital Sky Survey Overview The effect of galaxy interactions on star formation has been investigated.
Bayesian Analysis of X-ray Luminosity Functions A. Ptak (JHU) Abstract Often only a relatively small number of sources of a given class are detected in.
B12 Next Generation Supernova Surveys Marek Kowalski 1 and Bruno Leibundgut 2 1 Physikalisches Institut, Universität Bonn 2 European Southern Observatory.
“ Testing the predictive power of semi-analytic models using the Sloan Digital Sky Survey” Juan Esteban González Birmingham, 24/06/08 Collaborators: Cedric.
UCL, Sept 16th 2008 Photometric redshifts in the SWIRE Survey - the need for infrared bands Michael Rowan-Robinson Imperial College London.
Photometric Catalog I-band selected photometric catalog containing ~800,000 galaxies (I (AB) < 26 mag) in 8 bands (UBVgRizK) Star-Galaxy separation using.
Teaching Science with Sloan Digital Sky Survey Data GriPhyN/iVDGL Education and Outreach meeting March 1, 2002 Jordan Raddick The Johns Hopkins University.
Playing in High Dimensions Bob Nichol ICG, Portsmouth Thanks to all my colleagues in SDSS, GRIST & PiCA Special thanks to Chris Miller, Alex Gray, Gordon.
Optical Spectroscopy of Distant Red Galaxies Stijn Wuyts 1, Pieter van Dokkum 2 and Marijn Franx 1 1 Leiden Observatory, P.O. Box 9513, 2300RA Leiden,
The importance of spectroscopic redshifts in EMU Minnie Yuan Mao UTas/CASS/AAO.
● DES Galaxy Cluster Mock Catalogs – Local cluster luminosity function (LF), luminosity-mass, and number-mass relations (within R 200 virial region) from.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
A spectroscopic survey of the 3CR sample of radio galaxies Authors: Sara Buttiglione (SISSA - Trieste), Alessandro Capetti (INAF – Osservatorio Astronomico.
LSST AGN TODO Items Gordon Richards (Drexel University)
Feb/19/2008 A Demography of Galaxies in Galaxy Clusters with the Spectro-photometric Density Measurement. Joo Heon Yoon 윤주헌 Sukyoung Yi 이석영 Yoon et al.
Star formation in Deep Radio Surveys Nicholas Seymour ARC Future Fellow CSIRO Astronomy and Space Science Bologna 13 th September 2011.
How Standard are Cosmological Standard Candles? Mathew Smith and Collaborators (UCT, ICG, Munich, LCOGT and SDSS-II) SKA Bursary Conference 02/12/2010.
SED OF NORMAL GALAXIES Josefa Masegosa *, Isabel Márquez*, Brigitte Rocca-Volmerange * *, Michel Fioc * * & Damien Leborgne*** *Instituto de Astrofísica.
Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand
SDSS photo-z with model templates. Photo-z Estimate redshift (+ physical parameters) –Colors are special „projection” of spectra, like PCA.
The Environmental Effect on the UV Color-Magnitude Relation of Early-type Galaxies Hwihyun Kim Journal Club 10/24/2008 Schawinski et al. 2007, ApJS 173,
Stellar parameters estimation using Gaussian processes regression Bu Yude (Shandong University at Weihai)
University of Leicester, UK X-ray and Observational Astronomy (XROA) Group Estelle Pons - The X-ray Universe June 2014.
Revealing X-ray obscured Quasars in SWIRE sources with extreme MIR/O Giorgio Lanzuisi Fabrizio Fiore Enrico Piconcelli Chiara Feruglio Cristian Vignali.
Probing the faint end of the quasar luminosity function in the COSMOS field Hiroyuki Ikeda (Ehime Univ.) Tohru Nagao, Kenta Matsuoka, Taniguchi Yoshiaki,
Baryonic signature in the large-scale clustering of SDSS quasars Kazuhiro Yahata Dept. of Phys., University of Tokyo. Issha Kayo, Yasushi Suto, Matsubara.
The Research on Algorithms of Estimating Photometric Redshifts Using SDSS Galaxy Data Wang Dan China-VO group Chinese Virtual Observatory.
1 Galaxy Evolution in the SDSS Low-z Survey Huan Lin Experimental Astrophysics Group Fermilab.
Photometric Redshifts of objects in B field Sanhita Joshi ANGLES Workshop, Crete 07/04/2005.
Emission Line Galaxy Targeting for BigBOSS Nick Mostek Lawrence Berkeley National Lab BigBOSS Science Meeting Novemenber 19, 2009.
THE RELATIONSHIP BETWEEN LUMINOSITY AND BLACK HOLE MASSES IN ACTIVE GALAXIES: USING NEAR-INFRARED LINE Do-hyeong Kim, Myungshin Im Astronomy Program, Department.
Vince Oliver PhD student of ELTE University Budapest  Assignments within MAGPOP project.
Peter-Christian Zinn | AGN feedback works both ways | The Modern Radio Universe | 22 APR 2013 AGN feedback works both ways Positive AGN feedback through.
Future observational prospects for dark energy Roberto Trotta Oxford Astrophysics & Royal Astronomical Society.
The HerMES SPIRE Submillimeter Luminosity Function Mattia Vaccari & Lucia Marchetti & Alberto Franceschini (University of Padova) Isaac Roseboom (University.
The luminosity-dependent evolution of the radio luminosity function Emma Rigby University of Nottingham Collaborators: P. Best, M. Brookes, J. Dunlop,
Budapest Group Eötvös University MAGPOP kick-off meeting Cassis 2005 January
The Radio Properties of Type II Quasars PLAN Type II quasars Motivations Our sample Radio observations Basic radio properties Compare our results with.
Bayesian Template-Based Approach to Classifying SDSS-II Supernovae from 3-Year Survey Brian Connolly Photometric Supernova ID Workshop 3/16/12.
AKARI Spectroscopic Study of the Rest-frame Optical Spectra of Quasars at 3.5 < z < 6.5 Hyunsung Jun¹, Myungshin Im¹, Hyung Mok Lee², and the QSONG team.
Seeking type 2 QSO amongst bright X-ray selected EXOs Agnese Del Moro University of Leicester, UK In collaboration with: M.G. Watson (UoL), S. Mateos (UoL),
Coryn Bailer-Jones, ADASS XVII, September 2007, Kensington A method for exploiting domain information in parameter estimation Coryn Bailer-Jones Max Planck.
The Complete Calibration of the Color-Redshift Relation (C3R2) Survey
Spectral classification of galaxies of LAMOST DR3
k-Nearest neighbors and decision tree
QSO host galaxy properties from GEMS and COSMOS from z=0 to 3
A Survey of Starburst Galaxies An effort to help understand the starburst phenomenon and its importance to galaxy evolution Megan Sosey & Duilia deMello.
Understanding the near infrared spectrum of quasars
Photometric redshift estimation.
From: The evolution of star formation activity in galaxy groups
Spectroscopy surveys of stellar populations
A Black-Box Approach to Query Cardinality Estimation
Transfer Learning in Astronomy: A New Machine Learning Paradigm
Nobunari Kashikawa (National Astronomical Observatory of Japan)
Biases in Virial Black Hole Masses: an SDSS Perspective
Classification of GAIA data
Efficient Image Classification on Vertically Decomposed Data
Time Variability Selection of Quasars in the Sloan Digital Sky Survey
HERSCHEL and Galaxies/AGN “dust and gas”
The Starburst-AGN Connection Among COSMOS (U)LIRGs
Photometric Redshift Training Sets
High Resolution Spectroscopy of the IGM: How High
Demographics of SDSS Quasars in Two-Dimension
WFIRST Photo-z Study Peter L. Capak, Andreas Faisst,
Presentation transcript:

Bringing order to chaos 10101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000100101011101010110101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000100101011101010110101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000100101011101010110101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000100101011101010110101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000100101011101010110101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000100101011101010110101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000100101011101010110101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000100101011101010110101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000100101011101010110101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000100101011101010110101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000100101011101010110101010111010101010010110100101001010011101010010001001010111010101101010101110101010100101101001010010100111010100100010010101110101011010101011101010101001011010010100101001110101001000 RUHR-UNIVERSITÄT BOCHUM Bringing order to chaos New data-mining techniques for new surveys Peter-Christian Zinn Astronomical Institute of Ruhr-University, Bochum, Germany CSIRO Astronomy & Space Science, Sydney, Australia

Why new data handling techniques? New radio surveys will produce lots of data! ASKAP/EMU ~ 70 million objects LOFAR/Tier 1 ~ 7 million objects WSRT/WODAN ~ 10 million objects New optical/NIR surveys will produce even more data! Pan-STARRS/PS1-3π ~ 5-30 billion objects LSST/Galaxy “gold sample“ ~ 10 billion objects Astronomers go wild! Tera-, exa-, petabyte scale ∑~70 million Norris et al. (2011) Mostly no spectra available LSST Science Book

Implications for survey science There are no spectroscopic redshifts Redshift information must be accessed on other ways → photometric (better: statistical) redshifts There are no spectral classifications Classification of an object must be inferred on other ways → Flux ratios or SED-fitting (better: kNN classification) becomes more important There are no spectroscopically derived parameters Classic parameters such as metallicity must be derived on other ways → scaling relations (better: kNN regression) must be utilized

Common approaches Define plain color criteria Model SEDs Look for morphology, scaling relations, ... PROs: Physically motivated Easy to reproduce in 2d diagrams High completeness CONs: Global model Does not work for high dimensions Many false positive candidates Fan et al. 2001

Our approach: k nearest neighbors use k-Nearest Neighbours local model works fine in high dimensions does not require physical assumptions good reference samples available 4 mean=1 median=0 ?

Example 1: statistical redshifts stat-z for ATLAS ATLAS has spec-z for ~30% of all objects Training with 12-band data (ugriz,IRAC,MIPS24,13cm,20cm) Comparison: Cardamone et al. (2010) 14-band photo-z: 0.026 PCZ, Polsterer & Gieseke (subm.) Advantages of statistical redshifts No assumptions must be made (no template SEDs, luminosity range, dust reddening, flux homogenization, ...) Computation much faster than for class. photo-z (tstat- z~ n*log2(n) | tphoto-z~ nα , α>2) PCZ, Polsterer & Gieseke (subm.)

Redshift estimation for SDSS quasars kNN regression model + selected reference set 77,000 references reduced to 1,100 objects optimized for z > 4.8 4 colors used Polsterer, PCZ & Gieseke (2012) Laurino et al. (2011)

Example 2: object classification SF / AGN separation Classical tool: BPT-diagram (requires spectroscopy) Alternative: MIR color-color selection (not very reliable) SED fitting (work-intensive) PCZ et al. (in prep) kNN-based classification of ATLAS test- sample yields combined false classification rate of 9% Smolcic et al. (2008) achieve contamination rates between 15% - 20% using a highly sophisticated photometric method

Example 3: metallicity Metallicity from L-Z relation Spectroscopic input: SDSS metallicities as derived by Brinchman et al. (2004) Lr-Z relation calibrated by the 2dF survey (Lamareille et al. 2004) applied to Galactic extinction-corrected fluxes No other assumptions made Metallicity from kNN regression Spectroscopic input: SDSS metallici-ties derived by Brinchman+ (2004) kNN regression with respect to the 90 nearest neighbors No other assumptions made PCZ, Polsterer & Gieseke (subm.) PCZ, Polsterer & Gieseke (subm.)

Summary We presented the first results of utilizing advanced machine-learning techniques to classify/analyze large data sets. Dealing with large data sets will become increasingly important due to the enormous amounts of data forthcoming (radio) surveys will produce. A k nearest neighbor-based approach was tested on available data from ATLAS, COSMOS and the SDSS. Results for redshifts, object classifications and the regressional computation of astrophysical quantities (e.g. metallicity) all yield promising results. Data-mining will already play an important role in currently upcoming projects, e.g. ASKAP/EMU.