Section 2-6 Related Rates

Slides:



Advertisements
Similar presentations
1 Related Rates Section Related Rates (Preliminary Notes) If y depends on time t, then its derivative, dy/dt, is called a time rate of change.
Advertisements

2.6 Related Rates.
2019 Related Rates AB Calculus.
Related Rates TS: Explicitly assessing information and drawing conclusions.
ITK-122 Calculus II Dicky Dermawan
Section 2.6 Related Rates.
1. Read the problem, pull out essential information and identify a formula to be used. 2. Sketch a diagram if possible. 3. Write down any known rate of.
Section 2.8 Related Rates Math 1231: Single-Variable Calculus.
Objectives: 1.Be able to find the derivative of an equation with respect to various variables. 2.Be able to solve various rates of change applications.
Teresita S. Arlante Naga City Science High School.
Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
Sec 2.6 Related Rates In related rates problems, one tries to find the rate at which some quantity is changing by relating it to other quantities whose.
8. Related Rates.
DERIVATIVES Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity.
3.11 Related Rates Mon Nov 10 Do Now
Definition: When two or more related variables are changing with respect to time they are called related rates Section 2-6 Related Rates.
Section 2.6 Related Rates Read Guidelines For Solving Related Rates Problems on p. 150.
Related rates.
1 Related Rates Finding Related Rates ● Problem Solving with Related Rates.
Aim: How do we find related rates when we have more than two variables? Do Now: Find the points on the curve x2 + y2 = 2x +2y where.
AP Calculus AB Chapter 2, Section 6 Related Rates
R ELATED R ATES. The Hoover Dam Oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant.
3.9 Related Rates 1. Example Assume that oil spilled from a ruptured tanker in a circular pattern whose radius increases at a constant rate of 2 ft/s.
In this section, we will investigate the question: When two variables are related, how are their rates of change related?
RELATED RATES. P2P22.7 RELATED RATES  If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates.
Warm-Up If x 2 + y 2 = 25, what is the value of d 2 y at the point (4,3)? dx 2 a) -25/27 c) 7/27 e) 25/27 b) -7/27 d) 3/4.
Section 4.6 Related Rates.
Related Rates. The chain rule and implicit differentiation can be used to find the rates of change of two or more related variables that are changing.
Related Rates. I. Procedure A.) State what is given and what is to be found! Draw a diagram; introduce variables with quantities that can change and constants.
6.5: Related Rates Objective: To use implicit differentiation to relate the rates in which 2 things are changing, both with respect to time.
Differentiation: Related Rates – Day 1
Related Rates Section 4.6. First, a review problem: Consider a sphere of radius 10cm. If the radius changes 0.1cm (a very small amount) how much does.
4.1 - Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm 3 /s. How fast is the radius of the.
3.11 Related Rates Tues Nov 10 Do Now Differentiate implicitly in terms of t 1) 2)
Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
Sec 4.1 Related Rates Strategies in solving problems: 1.Read the problem carefully. 2.Draw a diagram or pictures. 3.Introduce notation. Assign symbols.
DO NOW Approximate 3 √26 by using an appropriate linearization. Show the computation that leads to your conclusion. The radius of a circle increased from.
4.1 Related Rates Greg Kelly, Hanford High School, Richland, Washington.
3.9 Related Rates In this section, we will learn: How to compute the rate of change of one quantity in terms of that of another quantity. DIFFERENTIATION.
Examples of Questions thus far…. Related Rates Objective: To find the rate of change of one quantity knowing the rate of change of another quantity.
3 DERIVATIVES.
Related Rates. We have already seen how the Chain Rule can be used to differentiate a function implicitly. Another important use of the Chain Rule is.
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Warm up 1. Calculate the area of a circle with diameter 24 ft. 2. If a right triangle has sides 6 and 9, how long is the hypotenuse? 3. Take the derivative.
MATH 1910 Chapter 2 Section 6 Related Rates.
DERIVATIVES WITH RESPECT TO TIME
Sect. 2.6 Related Rates.
4.6 Related Rates.
Table of Contents 19. Section 3.11 Related Rates.
Calculus I (MAT 145) Dr. Day Monday Oct 16, 2017
Calculus I (MAT 145) Dr. Day Monday Oct 23, 2017
Calculus I (MAT 145) Dr. Day Friday Oct 20, 2017
Related Rates AP Calculus AB.
Calculus I (MAT 145) Dr. Day Friday, October 5, 2018
Related Rates.
Copyright © Cengage Learning. All rights reserved.
Section 2.6 Calculus AP/Dual, Revised ©2017
4.6 – Related Rates “Trees not trimmed don't make good timber; children not educated don't make useful people.” Unknown Warm.
Warm-up A spherical balloon is being blown up at a rate of 10 cubic in per minute. What rate is radius changing when the surface area is 20 in squared.
Math 180 Packet #9 Related Rates.
Related Rates Chapter 5.5.
Calculus I (MAT 145) Dr. Day Wednesday February 27, 2019
AP Calculus AB 5.6 Related Rates.
Calculus I (MAT 145) Dr. Day Monday February 25, 2019
Calculus I (MAT 145) Dr. Day Monday March 4, 2019
§3.9 Related rates Main idea:
Related Rates Section 3.9.
Related Rates and Applications
AGENDA: 1. Copy Notes on Related Rates and work all examples
Related Rates ex: Air is being pumped into a spherical balloon so that its volume increases at a rate of 100cm3/s. How fast is the radius of the balloon.
Presentation transcript:

Section 2-6 Related Rates

Related Rates Definition: When two or more related variables are changing with respect to time they are called related rates In related rate story problems, the idea is to find a rate of change (with respect to time) of one quantity by using the rate of change (with respect to time) of a related quantity.

Derivative = rate of change When we say “rate of change”, we mean “rate of change with respect to time”. example: velocity- change in distance with respect to time If the variable is different from time use implicit differentiation

Helpful suggestions for solving Related Rates Identify all known and unknown quantities. Make a sketch and label it. Find an equation that describes the relationship between the variables. Common equations include the Pythagorean Theorem, Area of circle, Volumes of known geometric shape, SOH-CAH-TOA, similar triangles, etc. Differentiate both sides of the equation with respect to time. Substitute all known quantities and rates into the equation and solve.

1) Differentiate each with respect to t.

 

 

4) A 13 – foot ladder is leaning against the wall of a house 4) A 13 – foot ladder is leaning against the wall of a house. The base of the ladder slides away from the wall at a rate of 0.75 feet per second. How fast is the top of the ladder moving down the wall when the base is 12 feet from the wall?

5) Oil spills into a lake in a circular pattern 5) Oil spills into a lake in a circular pattern. If the radius of the circle increases at a constant rate of 3 feet per second, how fast is the area of the spill increasing at the end of 30 minutes.

6) A baseball diamond is a square with side 90 feet 6) A baseball diamond is a square with side 90 feet. A batter hits the ball and runs toward first base with a speed of 24 feet per second. At what rate is his distance from second base decreasing when he is halfway to first base?

7) A weather balloon is released 50 feet from an observer 7) A weather balloon is released 50 feet from an observer. It rises at a rate of 8 feet per second. How fast is the angle of elevation changing when the balloon is 50 feet high? Ɵ

8) Two cars start moving from the same point at noon 8) Two cars start moving from the same point at noon. One travels south at 60 mi/h and the other travels west at 25 mi/h. At what rate is the distance between the cars increasing at 2:00 pm?

9) Air is being pumped into a spherical ball at a rate of 5 cubic centimeters per minute. Determine the rate at which the radius of the ball is increasing when the diameter of the ball is 20 cm.

10) Water is being poured into a conical reservoir at the rate of pi cubic feet per second.  The reservoir has a radius of 6 feet across the top and a height of 12 feet.  At what rate is the depth of the water increasing when the depth is 6 feet?

Assignment Page 154 # 1, 3,13,17, 20, 29, 31, and 43 and Assignment 2-6 on Related Rates