Department of Chemistry The microwave spectra and molecular structures of 2-(trifluoromethyl)-oxirane and 2-vinyloxirane, two candidates for chiral analysis via noncovalent chiral tagging Mark D. Marshall, Helen O. Leung, Desmond Acha, Kevin Wang, Olivia Febles, Alexandra Gomez Department of Chemistry Amherst College Supported by the National Science Foundation
Noncovalent chiral tagging
Requirements for chiral tag Easily available in enantiopure form Small, chiral molecule Easy to introduce into free-jet expansion Functionalized for noncovalent interactions Simple rotational spectrum Minimal isotopic dilution (13C, 18O helpful) No hyperfine No internal rotation Spectroscopically characterized Structure determined 2-(trifluoromethyl)-oxirane (TFO) 2-vinyloxirane (VO)
Experimental methods Chirped pulse Fourier transform microwave spectrometer 6.1 – 18.1 GHz (TFO) 5.6 - 18.1 GHz (VO) 1% TFO in argon or liquid VO entrained in argon is expanded through two pulsed valves with 0.8 mm nozzle Spectra obtained as 4 GHz portions, 20 W power, 4 s chirp Ten 10-s FIDs per gas pulse 618,000 – 900,000 FIDs averaged 200 kHz FWHM Spectra analyzed using Kisiel’s AABS package in conjunction with Pickett’s SPFIT/SPCAT Photo courtesy of Jessica Mueller, Amherst College
TFO spectrum - overview μa = 1.49 D μb = 1.82 D μc = 1.17 D a-type transitions (red) c-type transitions (purple & blue) b-type transitions (green & teal)
TFO spectrum – 500 MHz portion
TFO – spectroscopic constants CH2CH(CF3)O 13CH2CH(CF3)O CH213CH(CF3)O CH2CH(13CF3)O CH2CH(CF3)18O A / MHz 4595.69375(43) 4575.75379(79) 4577.75383(99) 4596.08287(86) 4554.9283(13) B / MHz 2177.88275(21) 2144.71422(50) 2168.34203(71) 2174.86702(52) 2120.91207(89) C / MHz 2063.53764(21) 2029.81723(50) 2058.54030(70) 2060.83065(56) 2004.49405(82) J / 10-3 MHz 0.2531(22) 0.235(10) 0.263(14) 0.2370(92) 0.283(30) JK / 10-3 MHz 1.5833(19) 1.549(19) 1.493(20) 1.554(16) 1.586(49) K / 10-3 MHz −0.9442(88) −0.926(42) −0.908(45) −0.916(43) −1.50(18) J / 10-3 MHz 0.02160(11) 0.0221(26) 0.0239(20) 0.0249(16) 0.0225(16) K / 10-3 MHz −0.8504(57) −0.79(10) −0.57(12) −0.559(86) [−0.8504] J range 0 – 16 0 – 10 Ka range 0 – 8 0 – 4 0 – 3 rms / kHz 8.43 8.44 10.93 9.89 6.38
TFO - structure 1.4309(4) Å 1.46(1) Å 59.7(8)o 1.44(1) Å 1.498(4) Å Kisiel’s STRFIT used to fit A, B, C of 5 isotopologues to 6 structural parameters 2 bond lengths and one angle in ring –CF3 carbon located relative to O and plane of ring All other parameters fixed at ab initio values rms = 0.00070 u Å2 and well-behaved correlations EVAL used to calculate chemically relevant parameters
VO spectrum - overview μa = 0.81 D μb = 1.78 D μc = 0.41 D
VO spectrum – 1200 MHz portion
VO – spectroscopic constants C4H6O 13CH2CHOC2H3 CH213CHOC2H3 CH2CHO13CHCH2 CH2CHOCH13CH2 C2H318OC2H3 A / MHz 17367.2865(62) 17093.0919(24) 17261.4319(68) 17272.3215(18) 17359.0192(24) 16774.5386(54) B / MHz 3138.1862(16) 3097.70172(49) 3134.0039(16) 3116.09328(41) 3045.06444(53) 3072.07730(90) C / MHz 3043.6985(23) 2997.25591(65) 3042.9673(18) 3025.74048(48) 2956.24829(52) 2963.91544(72) J / 10-3 MHz 0.4697(72) [0.470] JK / 10-3 MHz 10.098(81) [10.10] K / 10-3 MHz 10.08(34) [10.08] J / 10-3 MHz 0.0096(13) [0.0096] K / 10-3 MHz -11.14(78) [ -11.14] RMS / kHz 5.155 6.145 4.691 4.068 5.692 7.127 Highest J 13 7 6 4 10 9 Highest Ka 3 2 1
VO - structure 1.436(3) Å 1.439(7) Å 1.474(6) Å 61.7(4)o 122.9(3)o 1.477(4) Å 1.338(2) Å Kisiel’s STRFIT used to fit A, B, C of 6 isotopologues to 9 structural parameters 2 bond lengths and one angle in ring C=C bond length, C–C=C angle, and C–C=C–C dihedral [–150.3(8)°] –C=CH2 carbon located relative to O and plane of ring All other parameters fixed at ab initio values rms = 0.00025 u Å2 and well-behaved correlations EVAL used to calculate chemically relevant parameters
Ar-TFO – spectroscopic constants Ar−CH2CH(CF3)O Ar−13CH2CH(CF3)O Ar−CH213CH(CF3)O Ar−CH2CH(13CF3)O A / MHz 3105.06577(36) 3060.66880(21) 3104.15793(27) 3104.09772(25) B / MHz 600.48925(11) 600.21588(11) 600.49728(13) 598.50592(13) C / MHz 571.12061(11) 569.76461(11) 571.15084(13) 569.28788(13) J / 10-3 MHz 0.66395(30) 0.65736(24) 0.66297(29) 0.65993(28) JK / 10-3 MHz −2.0995(20) −2.1322(24) −2.1026(33) −2.1150(31) K / 10-3 MHz 31.812(15) 31.773(22) 31.885(30) 31.867(29) J / 10-3 MHz 0.07320(12) 0.07502(10) 0.07284(15) 0.07270(13) K / 10-3 MHz 0.896(28) 0.864(52) 0.860(58) 0.860(59) J range 1 – 16 1 – 12 Ka range 0 – 6 0 – 3 rms/kHz 8.23 1.14 1.41 1.39
Ar-TFO - Structure 3.788(1) Å 3.7491(7) Å 3.454(2) Å Observed structure is the anti conformer in contrast to the syn conformer seen in methyloxirane! Blanco, Maris, Millemaggi, Caminati, J.Mol. Struct., 612, 309 (2002). Kisiel’s STRFIT used to fit A, B, C of 4 isotopologues to 3 structural parameters locating the Ar atom TFO fixed at monomer values rms = 0.048 u Å2 and well-behaved correlations EVAL used to calculate chemically relevant parameters
Summary The microwave spectra and molecular structures for two potential chiral tags are determined. Both 2-(trifluoromethyl)-oxirane and 2-vinyloxirane have uncomplicated, easily assigned spectra. Both are easily available in racemic and enantiopure forms. 2-(trifluoromethyl)-oxirane is easier to incorporate into free-jet expansion. Alternate functionalizations may prove useful in forming non-covalant interactions with different partners. Argon–2-(trifluoromethyl)-oxirane is observed as the anti conformer in contrast to the syn conformer found for propylene oxide (2-methyloxirane).