Department of Chemistry

Slides:



Advertisements
Similar presentations
68th OSU International Symposium on Molecular Spectroscopy TH08
Advertisements

MICROWAVE SPECTRUM AND AB INITIO CALCULATIONS OF meta-CHLOROBENZALDEHYDE Sean Arnold, Jessica Garrett, & Dr. Gordon Brown Department of Science and Mathematics.
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Infrared spectra of OCS-C 6 H 6, OCS-C 6 H 6 -He and OCS-C 6 H 6 -Ne van der Waals Complexes M. Dehghany, J. Norooz Oliaee, Mahin Afshari, N. Moazzen-Ahmadi.
Room-Temperature Chirped-Pulse Microwave Spectrum of 2-Methylfuran
Construction of a 480 MHz Chirped-Pulse Fourier-Transform Microwave Spectrometer: The Rotational Spectra of Divinyl Silane and 3,3-Difluoropentane Daniel.
Galen Sedo, Jamie L. Doran, Shenghai Wu, Kenneth R. Leopold Department of Chemistry, University of Minnesota A Microwave Determination of the Barrier to.
Rotational Spectra of Methylene Cyclobutane and Argon-Methylene Cyclobutane Wei Lin, Jovan Gayle Wallace Pringle, Stewart E. Novick Department of Chemistry.
Chirality of and gear motion in isopropyl methyl sulfide: Fourier transform microwave study Yoshiyuki Kawashima, Keisuke Sakieda, and Eizi Hirota* Kanagawa.
Chirped Pulse Fourier Transform Microwave Spectroscopy of SnCl Garry S. Grubbs II and Stephen A. Cooke Department of Chemistry, University of North Texas,
OSU – June – SGK1 STEVE KUKOLICH, ERIK MITCHELL ╬, SPENCER CAREY, MING SUN, AND BRYAN SARGUS, Dept. of Chemistry and Biochemistry, The University.
The complete molecular geometry of salicyl aldehyde from rotational spectroscopy Orest Dorosh, Ewa Białkowska-Jaworska, Zbigniew Kisiel, Lech Pszczółkowski,
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
Physique des Lasers, Atomes et Molécules
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Rotational Spectra and Structure of Phenylacetylene-Water Complex and Phenylacetylene-H 2 S (preliminary) Mausumi Goswami, L. Narasimhan, S. T. Manju and.
Microwave Spectrum and Molecular Structure of the Argon-(E )-1-Chloro-1,2-Difluoroethylene Complex Mark D. Marshall, Helen O. Leung, Hannah Tandon, Joseph.
†) Currently at Department of Chemistry, University of Manitoba A Microwave Study of the HNO 3 -N(CH 3 ) 3 Complex Galen Sedo, † Kenneth R. Leopold Department.
The Pure Rotational Spectrum of Pivaloyl Chloride, (CH 3 ) 3 CCOCl, between 800 and MHz. Garry S. Grubbs II, Christopher T. Dewberry, Kerry C. Etchison,
The Rotational Spectra of Cyclohexene Oxide and Its Argon van der Waals Complex DANIEL J. FROHMAN, STEWART E. NOVICK AND WALLACE C. PRINGLE Wesleyan University.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Bri Gordon Steven T. Shipman New College of Florida
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
OSU-05 TA 101 The Structure of Ethynylferrocene using Microwave Spectroscopy. Ranga Subramanian, Chandana Karunatilaka, Kristen Keck and Stephen Kukolich.
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectrum of acrylonitrile to 1.67 THz Zbigniew Kisiel, Lech Pszczółkowski Institute of Physics, Polish Academy of Sciences Brian J. Drouin,
CHIRPED PULSE AND CAVITY FOURIER TRANSFORM MICROWAVE (CP-FTMW AND FTMW) SPECTRUM OF BROMOPERFLUOROACETONE NICHOLAS FORCE, DAVID JOSEPH GILLCRIST, CASSANDRA.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
Helen O. Leung, Mark D. Marshall & Joseph P. Messenger Department of Chemistry Amherst College Supported by the National Science Foundation.
CHIRPED PULSE AND CAVITY FT MICROWAVE SPECTROSCOPY OF THE HCOOH – N(CH 3 ) 3 WEAKLY BOUND COMPLEX Rebecca B. Mackenzie, Christopher T. Dewberry, and Kenneth.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
Fourier-transform microwave spectroscopy of the CCCCl radical Takashi Yoshikawa, Yoshihiro Sumiyoshi, and Yasuki Endo Graduate School of Arts and Sciences,
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Department of Chemistry *Department of Chemistry, Mt. Holyoke College,
Structure and tunneling dynamics of gauche-1,3-butadiene
Jack C. Harms, Leah C. O’Brien,* and James J. O’Brien
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Mark D. Marshall, Helen O. Leung, Craig J. Nelson & Leonard H. Yoon
1Kanagawa Institute of Technology 3Georgia Southern University
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
The CP-FTMW Spectrum of Verbenone
The CP-FTMW Spectrum of Bromoperfluoroacetone
Aimee Bell, Omar Mahassneh, James Singer,
Chirped pulse rotational spectroscopy
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Department of Chemistry
CAITLIN BRAY CARA RAE RIVERA E. A. ARSENAULT DANIEL A. OBENCHAIN
Microwave spectra of 1- and 2-bromobutane
Mahdi Kamaee and Jennifer van Wijngaarden
Methylstyrenes – Microwave Spectroscopy
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
The rotational spectrum of the urea isocyanic acid complex
AN INVESTIGATION OF THE DIPOLE FORBIDDEN TRANSITION EFFECTS IN BROMOFLUOROCARBONS AS IT PERTAINS TO 3-BROMO-1,1,1,2,2-PENTAFLUOROPROPANE USING CP-FTMW.
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Michal M. Serafin, Sean A. Peebles
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
Presentation transcript:

Department of Chemistry The microwave spectra and molecular structures of 2-(trifluoromethyl)-oxirane and 2-vinyloxirane, two candidates for chiral analysis via noncovalent chiral tagging Mark D. Marshall, Helen O. Leung, Desmond Acha, Kevin Wang, Olivia Febles, Alexandra Gomez Department of Chemistry Amherst College Supported by the National Science Foundation

Noncovalent chiral tagging

Requirements for chiral tag Easily available in enantiopure form Small, chiral molecule Easy to introduce into free-jet expansion Functionalized for noncovalent interactions Simple rotational spectrum Minimal isotopic dilution (13C, 18O helpful) No hyperfine No internal rotation Spectroscopically characterized Structure determined 2-(trifluoromethyl)-oxirane (TFO) 2-vinyloxirane (VO)

Experimental methods Chirped pulse Fourier transform microwave spectrometer 6.1 – 18.1 GHz (TFO) 5.6 - 18.1 GHz (VO) 1% TFO in argon or liquid VO entrained in argon is expanded through two pulsed valves with 0.8 mm nozzle Spectra obtained as 4 GHz portions, 20 W power, 4 s chirp Ten 10-s FIDs per gas pulse 618,000 – 900,000 FIDs averaged 200 kHz FWHM Spectra analyzed using Kisiel’s AABS package in conjunction with Pickett’s SPFIT/SPCAT Photo courtesy of Jessica Mueller, Amherst College

TFO spectrum - overview μa = 1.49 D μb = 1.82 D μc = 1.17 D a-type transitions (red) c-type transitions (purple & blue) b-type transitions (green & teal)

TFO spectrum – 500 MHz portion

TFO – spectroscopic constants CH2CH(CF3)O 13CH2CH(CF3)O CH213CH(CF3)O CH2CH(13CF3)O CH2CH(CF3)18O A / MHz 4595.69375(43) 4575.75379(79) 4577.75383(99) 4596.08287(86) 4554.9283(13) B / MHz 2177.88275(21) 2144.71422(50) 2168.34203(71) 2174.86702(52) 2120.91207(89) C / MHz 2063.53764(21) 2029.81723(50) 2058.54030(70) 2060.83065(56) 2004.49405(82) J / 10-3 MHz 0.2531(22) 0.235(10) 0.263(14) 0.2370(92) 0.283(30) JK / 10-3 MHz 1.5833(19) 1.549(19) 1.493(20) 1.554(16) 1.586(49) K / 10-3 MHz −0.9442(88) −0.926(42) −0.908(45) −0.916(43) −1.50(18) J / 10-3 MHz 0.02160(11) 0.0221(26) 0.0239(20) 0.0249(16) 0.0225(16) K / 10-3 MHz −0.8504(57) −0.79(10) −0.57(12) −0.559(86) [−0.8504] J range 0 – 16 0 – 10 Ka range 0 – 8 0 – 4 0 – 3 rms / kHz 8.43 8.44 10.93 9.89 6.38

TFO - structure 1.4309(4) Å 1.46(1) Å 59.7(8)o 1.44(1) Å 1.498(4) Å Kisiel’s STRFIT used to fit A, B, C of 5 isotopologues to 6 structural parameters 2 bond lengths and one angle in ring –CF3 carbon located relative to O and plane of ring All other parameters fixed at ab initio values rms = 0.00070 u Å2 and well-behaved correlations EVAL used to calculate chemically relevant parameters

VO spectrum - overview μa = 0.81 D μb = 1.78 D μc = 0.41 D

VO spectrum – 1200 MHz portion

VO – spectroscopic constants C4H6O 13CH2CHOC2H3 CH213CHOC2H3 CH2CHO13CHCH2 CH2CHOCH13CH2 C2H318OC2H3 A / MHz 17367.2865(62) 17093.0919(24) 17261.4319(68) 17272.3215(18) 17359.0192(24) 16774.5386(54) B / MHz 3138.1862(16) 3097.70172(49) 3134.0039(16) 3116.09328(41) 3045.06444(53) 3072.07730(90) C / MHz 3043.6985(23) 2997.25591(65) 3042.9673(18) 3025.74048(48) 2956.24829(52) 2963.91544(72) J / 10-3 MHz 0.4697(72) [0.470] JK / 10-3 MHz 10.098(81) [10.10] K / 10-3 MHz 10.08(34) [10.08] J / 10-3 MHz 0.0096(13) [0.0096] K / 10-3 MHz -11.14(78) [ -11.14] RMS / kHz 5.155 6.145 4.691 4.068 5.692 7.127 Highest J 13 7 6 4 10 9 Highest Ka 3 2 1

VO - structure 1.436(3) Å 1.439(7) Å 1.474(6) Å 61.7(4)o 122.9(3)o 1.477(4) Å 1.338(2) Å Kisiel’s STRFIT used to fit A, B, C of 6 isotopologues to 9 structural parameters 2 bond lengths and one angle in ring C=C bond length, C–C=C angle, and C–C=C–C dihedral [–150.3(8)°] –C=CH2 carbon located relative to O and plane of ring All other parameters fixed at ab initio values rms = 0.00025 u Å2 and well-behaved correlations EVAL used to calculate chemically relevant parameters

Ar-TFO – spectroscopic constants Ar−CH2CH(CF3)O Ar−13CH2CH(CF3)O Ar−CH213CH(CF3)O Ar−CH2CH(13CF3)O A / MHz 3105.06577(36) 3060.66880(21) 3104.15793(27) 3104.09772(25) B / MHz 600.48925(11) 600.21588(11) 600.49728(13) 598.50592(13) C / MHz 571.12061(11) 569.76461(11) 571.15084(13) 569.28788(13) J / 10-3 MHz 0.66395(30) 0.65736(24) 0.66297(29) 0.65993(28) JK / 10-3 MHz −2.0995(20) −2.1322(24) −2.1026(33) −2.1150(31) K / 10-3 MHz 31.812(15) 31.773(22) 31.885(30) 31.867(29) J / 10-3 MHz 0.07320(12) 0.07502(10) 0.07284(15) 0.07270(13) K / 10-3 MHz 0.896(28) 0.864(52) 0.860(58) 0.860(59) J range 1 – 16 1 – 12 Ka range 0 – 6 0 – 3 rms/kHz 8.23 1.14 1.41 1.39

Ar-TFO - Structure 3.788(1) Å 3.7491(7) Å 3.454(2) Å Observed structure is the anti conformer in contrast to the syn conformer seen in methyloxirane! Blanco, Maris, Millemaggi, Caminati, J.Mol. Struct., 612, 309 (2002). Kisiel’s STRFIT used to fit A, B, C of 4 isotopologues to 3 structural parameters locating the Ar atom TFO fixed at monomer values rms = 0.048 u Å2 and well-behaved correlations EVAL used to calculate chemically relevant parameters

Summary The microwave spectra and molecular structures for two potential chiral tags are determined. Both 2-(trifluoromethyl)-oxirane and 2-vinyloxirane have uncomplicated, easily assigned spectra. Both are easily available in racemic and enantiopure forms. 2-(trifluoromethyl)-oxirane is easier to incorporate into free-jet expansion. Alternate functionalizations may prove useful in forming non-covalant interactions with different partners. Argon–2-(trifluoromethyl)-oxirane is observed as the anti conformer in contrast to the syn conformer found for propylene oxide (2-methyloxirane).