Study of the strain relaxation in InGaN/GaN

Slides:



Advertisements
Similar presentations
starting substrates were undoped 5  m thick GaN films grown by hydride vapor phase epitaxy (HVPE) on c-plane sapphire. 60 nm thick SiOx film was then.
Advertisements

 To overcome these issues, a “dual-stage MQW” structure was proposed to enhance the electron injection and improve the crystalline quality of the overlying.
Latest development of InGaN and Short-Wavelength LD/LED/VCSEL 屠嫚琳 Man-lin Tu.
Electron Spectroscopies of InN grown by HPCVD Department of Physics and Astronomy Georgia State University Atlanta, Georgia Rudra P. Bhatta Solid State.
Laser etching of GaN Jonathan Winterstein Dr. Tim Sands, Advisor.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Saturated gain in GaN epilayers studied by variable stripe length technique Rui Li Journal Club, Electrical Engineering Boston University J. Mickevičiusa.
Simulation of InGaN violet and ultraviolet multiple-quantum-well laser diodes Sheng-Horng Yen, Bo-Jean Chen, and Yen-Kuang Kuo* *Department of Physics,
Quantum Dots. Optical and Photoelectrical properties of QD of III-V Compounds. Alexander Senichev Physics Faculty Department of Solid State Physics
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Tyler Park John Colton Haeyeon Yang* Jeff Farrer
APPLIED PHYSICS LETTERS 96, , 2010
Kansas State University III-Nitride Deep Ultraviolet Photonic Materials and Structures Jingyu Lin & Hongxing Jiang DMR Growth of III-nitride Photonic.
Raman scattering of a single freestanding rolled up SiGe/Si tube R. Songmuang and O. G. Schmidt Max-Planck-Institut für Festkörperforschung Stuttgart,
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Improvement in light-output efficiency of Near-Ultraviolet InGaN–GaN LEDs Fabricated on Stripe Patterned Sapphire Substrate 指導教授 : 管鴻 教授 報告學生 : 林耀祥 日 期:
SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 1 Adviser : Hon Kuan Adviser : Hon Kuan Wen-Cheng Tzou Wen-Cheng Tzou Reporter :
1 Materials Science Laboratory, Department of Physics, College of Science, Az Zulfi, Majmaah University, KSA.
Influence of oxygen content on the 1.54 μm luminescenceof Er-doped amorphous SiO x thin films G.WoraAdeola,H.Rinnert *, M.Vergnat LaboratoiredePhysiquedesMate´riaux.
Low dislocations density GaN/sapphire for optoelectronic devices Low dislocations density GaN/sapphire for optoelectronic devices B. Beaumont, J-P. Faurie,
Efficiency and Electron Leakage Characteristics in GaN-Based Light-Emitting Diodes Without AlGaN Electron-Blocking-Layer Structures Han-Youl Ryu, Jong-In.
1 High Brightness Light Emitting Diodes Chapter 7~8 Reporter :陳秀芬 Adviser :郭艷光 教授 Date : 2003/5/5(Study meeting)
The Analysis of Light Absorption and Extraction of InGaN LEDs Jeng-Feng Lin, Chin-Chieh Kang, Pei-Chiang Kao Department of Electro-Optical Engineering,
Resonant medium: Up to four (Zn,Cd)Se quantum wells. Luminescence selection is possible with a variation of the Cd-content or the well width. The front.
Influence of Si-Doping on the Characteristics of InGaN–GaN Multiple Quantum-Well Blue Light Emitting Diodes Sum DJ L. W. Wu, S. J. Chang, T. C. Wen, Y.
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Tyler Park Jeffrey Farrer John Colton Haeyeon Yang APS March Meeting 2012, Boston.
Characterizing InGaAs quantum dot chains Tyler Park John Colton Jeff Farrer Ken Clark Jeff Farrer Ken Clark David Meyer Scott Thalman Haeyeon Yang APS.
報告人 : 洪國慶. Outline INTRODUCTION EXPERIMENTAL DETAILS RESULTS AND DISCUSSION CONCLUSION REFERENCES 2.
Y.Y. Outline Introduction Experiment Results and discussion Conclusion References.
Conductive epitaxial ZnO layers by ALD Conductive epitaxial ZnO layers by ALD Zs. Baji, Z. Lábadi, Zs. E. Horváth, I. Bársony Research Centre for Natural.
From: S.Y. Hu Y.C. Lee, J.W. Lee, J.C. Huang, J.L. Shen, W.
1 AlCl 3 -induced crystallization of amorphous silicon thin films 指導教授 : 管 鴻 (Hon Kuan) 老師 學生 : 李宗育 (Tsung-Yu Li)
Current spreading and thermal effects in blue LED dice Jen Kai Lee.
Fig. 3. Temperature dependence of normalized integrated PL intensity for InGaN MQW on GaN substrates grown at Tg of 740, 780 and 800 ℃.
Y.W. Lin. Outline Introduction Experiments Results and Discussion Conclusion References.
Slide # 1 PL spectra of Quantum Wells The e1-h1 transition is most probable and observed with highest intensity At higher temperature higher levels can.
X-Ray Diffraction Analysis of Ⅲ - Ⅴ Superlattices: Characterization, Simulation and Fitting 1 Xiangyu Wu Enlong Liu Mentor: Clement Merckling EPI Group.
Ru-Chin Tu, Chun-Ju Tun, Shyi-Ming Pan, Chang-Cheng Chuo, J. K. Sheu, Ching-En Tsai, Te-Chung Wang,and Gou-Chung Chi IEEE PHOTONICS TECHNOLOGY LETTERS,
Gallium Nitride Research & Development Rakesh Sohal
SSL Lab. SSL Lab. Solid State Lighting Lab. Southern Taiwan University 1 Adviser : Hon Kuan Reporter: Wei-Shun Huang Southern Taiwan University Efficient.
Controlled fabrication and optical properties of one-dimensional SiGe nanostructures Zilong Wu, Hui Lei, Zhenyang Zhong Introduction Controlled Si and.
Luminescent Properties of ZnO and ZnO:Ce Thin-Films Manuel García-Méndez
Experimental Details 1 Fig. 1. Schematic diagram of the investigated LED layer structure. In the present work, the Mg doping width of the LT p-GaN interlayer.
GaN-Based MSM Photodetectors Prepared on Patterned Sapphire Substrates Shoou-Jinn Chang, Member, IEEE, Y. D. Jhou, Y. C. Lin, S. L. Wu, C. H. Chen, T.
Small internal electric fields in quaternary InAlGaN heterostructures S.P. Łepkowski 1, P. Lefebvre 2, S. Anceau 1,2, T. Suski 1, H. Teisseyre 1, H. Hirayama.
Date of download: 7/6/2016 Copyright © 2016 SPIE. All rights reserved. X-ray diffraction (XRD) 2θ-ω scans around (00·2) reflection for InxGa1−xN layers.
by chemical solution process
K-x-ray Emission in Fast O5+ on Ar Collisions
Y. Zhu, C. L. Yuan, S. L. Quek, S. S. Chan, and P. P. Ong
Effect of dopant density on contact potential difference across n-type GaAs homojunctions using Kelvin Probe force Microscopy C. Kameni Boumenou1, Z.N.
Y.Y CHEN.
Luminescent Periodic Microstructures for Medical Applications
Fig. 7 from Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer.
d ~ r Results Characterization of GaAsP NWs grown on Si substrates
Centro de Investigación y de Estudios Avanzados del Institúto Politécnico Nacional (Cinvestav IPN) Palladium Nanoparticles Formation in Si Substrates from.
Steven DenBaars Materials and ECE Departments
Structural Quantum Size Effects in Pb/Si(111)
Local Structure around In Atoms in InxGa1-xN Single-Quantum-Well by XAFS T. Miyanaga Department of Materials Science and Technology, Faculty of Science.
へき開再成長法により作製された(110)GaAs 量子井戸における表面原子ステップの観察
Atomically thin two-dimensional organic-inorganic hybrid perovskites
Annealing effects on photoluminescence spectra of
by Shuji Nakamura Science Volume 281(5379): August 14, 1998
Characterization of III-Nitrides on Hydrogen-Etched 6H-SiC
Introduction of Master's thesis of Jih-Yuan Chang and Wen-Wei Lin
Highly Selective Sieving in Porous Graphene-like Carbon Nitride for Helium/Light Isotopes Separation Yuanyuan Qu
by Haiming Zhu, Kiyoshi Miyata, Yongping Fu, Jue Wang, Prakriti P
High-efficiency green light-emitting diodes
Fig. 4 Pupil shape and image quality in the model sheep eye.
Presentation transcript:

Study of the strain relaxation in InGaN/GaN Southern Taiwan University Study of the strain relaxation in InGaN/GaN multiple quantum well structures Reporter:Siang-Fong Jhang

Outline Introduction Experiments Result and Discussion Conclusion References

Introduction The relationship between strain relaxation and quantum well number in InGaN/GaN multiple quantum well (MQW) structures. Investigated by x-ray diffraction (XRD) And low-temperature photoluminescence (PL) measurements.

Experiments The samples used in this article are InGaN/GaN MQW structures with 2, 3, 5, or 10 periods. The samples were grown on sapphire by atmospheric pressure metalorganic chemical vapor deposition(MOCVD) The substrates were initially treated in H2 ambient at 1150 °C, followed by the growth of a 25 nm thick low-temperature (450 °C) GaN buffer layer and a 1.8 mm undoped GaN layer grown at 1075 °C. The undoped MQW structures were then grown at a temperature of 700 °C, and consisted of a 4 nm InxGa1-xN well and 9 nm GaN barriers with the different periods mentioned above. GaN U-GaN GaN(buffer layer) Sapphire

Result and Discussion FIG. 1.Cross-sectional TEM images of the samples with 10 periods, taken near the (1120) zone axis with g=[0002]

Result and Discussion FIG. 2. Photoluminescence spectra of four InGaN/GaN MQW structures with 2, 3, 5, and 10 periods, measured at 10 K under an excitation power of 0.5 mW.

Result and Discussion FIG. 3. Excitation power dependent photoluminescence of InGaN/GaN MQWs with 2(a) and 10(b) periods at T=10 K.

Result and Discussion FIG. 4. Emission energy of an InGaN/GaN MQW as a function of quantum well number under lower excitation power ~0.5 mW! and high excitation power ~50 mW!, both measured at 10 K.

Result and Discussion ↑ Residual strain

Result and Discussion TABLE I. Residual strain in InGaN/GaN MQW structures with 2, 3, 5, and 10 periods, respectively. The elastic constants used are also listed.

Result and Discussion FIG. 5. Measured and simulated XRD patterns of InGaN/GaN MQW structures based on (0006) 2u –v mode. The quantum well numbers of the InGaN/GaN MQWs are 2, 3, 5, and 10, respectively. The dashed lines correspond to simulated curves.

Conclusion With increasing quantum well number, the emission energy shows a clear blue shift, which is attributed to strain relaxation. Strain relaxation stars to take place from three-period MQWs.

References S. Nakamura et al., Jpn. J. Appl. Phys., Part 2 36, L1568 (1997) I. Akosaki, S. Sota, H. Sakai, T. Tanaka, M. Koike, and H. Amano, Electron. Lett. 32, 1105 (1996) M. Kneissl, D. P. Bour, N. M. Johnson, L. T. Romano, B. S. Krusor, R. Donaldson, J. Walker, and C. Dunnrowicz, Appl. Phys. Lett. 72, 1539 (1998) M. Mack, A. Abare, M. Aizcorbe, P. Kozodoy, S. Keller, U. Mishra, L. Coldren, and S. DenBaars, MRS Internet J. Nitride Semicond. Res. 2, 41 (1997) T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Part 1 38, 3976 (1999) C. A. Tran, R. F. Karlicek, Jr., M. G. Brown, I. Eliashevich, A. Gurary, M. Schurman, and R. Stall, Phys. Status Solidi A 176, 91 (1999) M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. DenBaars, Appl. Phys. Lett. 72, 1066 (1998) T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, Appl. Phys. Lett. 73, 3571 (1998) M. D. McClusky, L. T. Romano, B. S. Krusor, D. P. Bour, N. M. Johnson, and S. Brennan, Appl. Phys. Lett. 72, 1730 (1998) L. T. Romano, M. D. McClusky, C. G. Van de Walle, J. E. Northup, D. P. Bour, M. Kneissl, T. Suski, and J. Jun, Appl. Phys. Lett. 75, 3950 (1999) Y. S. Lin et al., Appl. Phys. Lett. 77, 2988 (2000)

Thanks for your attention !