NSTX-U Supported by Fast Time Response Electromagnetic Particle Injection Concept for Disruption Mitigation (EPI) 1R. Raman, 1T.R. Jarboe, 2J.E. Menard,

Slides:



Advertisements
Similar presentations
NSTX-U T&T TSG Contributions to FY15 JRT NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U.
Advertisements

Summary of Presentations on Plasma Start-up and Progress on Small ST devices from STW2011 R. Raman University of Washington, Seattle, WA The Joint Meeting.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman Final XP Review June 5, 2009 NSTX Supported by.
NSTX Team Meeting June 25, 2010 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Raman, APS051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
NSTX NSTX Team Meeting Jan. 3, 2013 NSTX Team Meeting Jan. 3, 2013 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu.
NSTX Team Meeting May 28, 2008 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
Quality Assurance Readiness for Operations Review Judy Malsbury, Head of QA Princeton Plasma Physics Laboratory NSTX Upgrade LSB B318 December 9-11, 2014.
Relay Feedback and X-point Height Control Egemen Kolemen S. Gerhardt and D. A. Gates 2010 Results Review Nov/30/2010 NSTX Supported by College W&M Colorado.
PCS Navigation D. Mueller January 26-28, 2010 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS.
Non-axisymmetric Control Coil Upgrade and related ideas NSTX Supported by V1.0 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U.
Current status of high k scattering system J. Kim 1, Y. Ren 2, K-C. Lee 3 and R. Kaita 2 1) POSTECH 2) PPPL 3) UC Davis NSTX Monday Physics Meeting LSB-318,
NSTX-U Collaboration Status and Plans for: Charged Fusion Product Diagnostic FIU Werner U. Boeglin Ramona Perez, Alexander Netepenko, FIU D.S. Darrow PPPL.
1 Update on Run Schedule R. Raman NSTX Team Meeting PPPL, Princeton, NJ, 08 February, 2006 Work supported by DOE contract numbers DE-FG02-99ER54519 AM08,
Centrifugal Li Granule Injection (Can Injected Lithium Granules Trigger ELMs?) D.K. Mansfield, A.L. Roquemore, H.K. Kugel (PPPL), L.R. Baylor, R. Maingi.
Supported by Office of Science Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U.
NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew.
Radiative divertor with impurity seeding in NSTX V. A. Soukhanovskii (LLNL) Acknowledgements: NSTX Team NSTX Results Review Princeton, NJ Wednesday, 1.
NSTX Effects of NTSX Upgrades on DiagnosticsFebruary 8, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns.
Prototype Multi-Energy Soft X-ray Diagnostic for EAST Kevin Tritz Johns Hopkins University NSTX-U Monday Physics Meeting PPPL, Princeton, NJ June 25 th,
Direct measurement of plasma response using Nyquist Contour Z.R. Wang 1, J.-K. Park 1, M. J. Lanctot 2, J. E. Menard 1,Y.Q. Liu 3, R. Nazikian 1 1 Princeton.
NSTX-U Program Update J. Menard NSTX-U Team Meeting B318 May 7, 2013 NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto.
NSTX-U Supported by Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Inst for Nucl.
Second Switching Power Amplifier (SPA) Upgrade Physics Considerations Discussion S.A. Sabbagh 1, and the NSTX Research Team 1 Department of Applied Physics,
Summary of the SFPS XPs R. Raman, D. Mueller University of Washington Princeton Plasma Physics Laboratory and the NSTX Research Team FY09 NSTX Results.
NSTX Upgrade Project – Final Design Review June , NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
1 R Raman, B.A. Nelson, D. Mueller 1, T.R. Jarboe, M.G. Bell 1, J. Menard 1, R. Maqueda 2 et al. University of Washington, Seattle 1 Princeton Plasma Physics.
Xp705: Multimode ion transport: TAE avalanches E D Fredrickson, N A Crocker, N N Gorelenkov, W W Heidbrink, S Kubota, F M Levinton, H Yuh, R E Bell NSTX.
Development of Improved Vertical Position Control S.P. Gerhardt, E. Kolemen ASC Session, NSTX 2011/12 Research Forum Location Date NSTX Supported by College.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle NSTX Run Usage 27 February – 5 May, 2006 NSTX Mid-Run Assessment PPPL, Princeton,
NSTX Upgrade Project – Final Design Review June , NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
Energy Confinement Scaling in the Low Aspect Ratio National Spherical Torus Experiment (NSTX) S. M. Kaye, M.G. Bell, R.E. Bell, E.D. Fredrickson, B.P.
Some Halo Current Measurements in 2009 S.P. Gerhardt Thanks to: E. Fredrickson, H. Takahashi, L. Guttadora NSTX Results Review, 2009 NSTX Supported by.
NSTX Upgrade Project – Final Design Review June , NSTX Supported by Vacuum Pumping, Gauging and RGA Systems W. Blanchard Princeton Plasma.
NSTX Team Meeting February 7, 2007 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U.
Supported by Office of Science NSTX H. Yuh (Nova Photonics) and the NSTX Group, PPPL Presented by S. Kaye 4 th T&C ITPA Meeting Culham Lab, UK March.
Development and characterization of intermediate- δ discharge with lithium coatings XP-919 Josh Kallman XP Review - ASC Feb 2, 2009 NSTX Supported by College.
NSTX Team Meeting December 21, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Enhancement of edge stability with lithium wall coatings in NSTX Rajesh Maingi, Oak Ridge National Lab R.E. Bell, B.P. LeBlanc, R. Kaita, H.W. Kugel, J.
Effect of 3-D fields on edge power/particle fluxes between and during ELMs (XP1026) A. Loarte, J-W. Ahn, J. M. Canik, R. Maingi, and J.-K. Park and the.
NSTX-Upgrade Magnetics And Related Diagnostics SPG NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu.
NSTX NSTX Team Meeting May 7, 2013 NSTX Team Meeting May 7, 2013 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu.
First results of fast IR camera diagnostic J-W. Ahn and R. Maingi ORNL NSTX Monday Physics Meeting LSB-318, PPPL June 22, 2009 NSTX Supported by College.
NSTX NSTX TF, PF and umbrella Upgrade Internal ReviewFeb 24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
NSTX NSTX LidsJuly 6, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL Johns Hopkins U LANL LLNL Lodestar.
NSTX Team Meeting June 30, 2009 College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics.
Supported by Office of Science NSTX S.M. Kaye, PPPL ITPA PPPL 5-7 Oct Confinement and Transport in NSTX: Lithiumized vs non-Lithiumized Plasmas Culham.
NSTX-U Disruption PAM Working Group – Controlled Shutdown XP Discussion S. A. Sabbagh and R. Raman Department of Applied Physics, Columbia University,
Planning for Toroidal Lithium Divertor Target for NSTX and Supporting Experiments on CDX-U/LTX R. Kaita Boundary Physics Science Focus Group Meeting July.
Upgrades to PCS Hardware (Incomplete) KE, DAG, SPG, EK, DM, PS NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo.
NSTX 2007 MHD XP Review – J. Menard 1 Optimization of RFA detection algorithms during dynamic error field correction Presented by: J.E. Menard, PPPL Final.
Presently Planned Vacuum-Side Diagnostics for the NSTX-Upgrade Center Column NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
XP-945: ELM Pacing via Vertical Position Jogs S.P. Gerhardt, J.M. Canik, D. Gates, R. Goldston, R. Hawryluk, R. Maingi, J. Menard, S. Sabbagh, A. Sontag.
Preliminary Results from XP1020 RFA Measurements J.W. Berkery Department of Applied Physics, Columbia University, New York, NY, USA NSTX Monday Physics.
Raman, Dec051 Solenoid-free Plasma Start-up in NSTX using Transient CHI R. Raman 1, T.R. Jarboe 1, B.A. Nelson 1, M.G. Bell 2, D.Mueller 2, R. Maqueda.
Implementation of a 3D halo neutral model in the TRANSP code and application to projected NSTX-U plasmas S. S. Medley 1, D. Liu 2, M. V. Gorelenkova 1,
NSTX NSTX Team Meeting –Masa Ono August 15, 2014 NSTX-U Team Meeting August 15, 2014 Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo.
Advanced Scenario Development on NSTX D. A. Gates, PPPL For the NSTX Research Team 50th APS-DPP meeting Dallas, TX November 17, 2008 College W&M Colorado.
NSTX-U Collaboration Status and Plans for: M.I.T. Plasma Science and Fusion Center Abhay K. Ram, Paul Bonoli, and John Wright NSTX-U Collaborator Research.
1 Roger Raman for the NSTX Research Team University of Washington, Seattle Update on the NSTX Run Plan PPPL, Princeton, NJ, 15 May, 2006 Supported by Office.
Monitoring impact of the LLD Adam McLean, ORNL T. Gray, R. Maingi Lithium, TSG group preliminary research forum PPPL, B252 Nov. 23, 2009 NSTX Supported.
Comments on HC Measurements for NSTX- Upgrade SPG CS Upgrade Meeting 11/2/11 NSTX Supported by Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima.
Correlation between Electron Transport and Shear Alfven Activity in NSTX College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins.
Supported by Office of Science NSTX K. Tritz, S. Kaye PPPL 2009 NSTX Research Forum PPPL, Princeton University Dec. 8-10, 2008 Transport and Turbulence.
Neutron diagnostic calibration transfer XMP D. Darrow and the NSTX Research Team XMP & XP review meeting Control Room Annex June 11, 2015 NSTX-U Supported.
NSTX Team Meeting April 5, 2006 Supported by Office of Science College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INEL Johns Hopkins U LANL.
XP-950: XP-950: Dependence of metallic impurity accumulation on I p and the outer gap in the presence of lithium deposition S. Paul, S. P. Gerhardt are.
NSTX NSTX Upgrade Project – Final Design ReviewJune 22-24, NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INEL.
Demonstration of Coupling CHI Started Discharges to Induction in NSTX R. Raman 1, B.A. Nelson 1, T.R. Jarboe 1, D. Mueller 2, M.G. Bell 2, J. Menard 2,
Electromagnetic Particle Injector (EPI) Proposed as a Backup Disruption Mitigation System for ITER The EPI system accelerates a sabot to high-velocity.
Presentation transcript:

NSTX-U Supported by Fast Time Response Electromagnetic Particle Injection Concept for Disruption Mitigation (EPI) 1R. Raman, 1T.R. Jarboe, 2J.E. Menard, 2M. Ono 1University of Washington / 2PPPL 20 July 2017 FESAC Transformative Enabling Capabilities Meeting PPPL (19-21 July 2017) College W&M Colorado Sch Mines Columbia U Comp-X General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD U Colorado U Maryland U Rochester U Washington U Wisconsin Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U U Tokyo JAEA Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich IPP, Garching ASCR, Czech Rep U Quebec This work is supported by US DOE contract numbers DE-SC0006757 and DE-AC02-09CH11466

Outline Limitations of the present DM system for ITER How EPI addresses these issues? Main components of an EPI system How does it scale to ITER? Off-line experimental test results FESAC TEC Questions and Answers Conclusions

Limitations of the Shattered Pellet System The speed of the un-fragmented high-mass pellets is restricted to about 200-400m/s due to the gas propellant Upon shattering the fragmented shards lose much of their velocity relative to the un-fragmented pellet Because of the slow speed and size of the fragmented particles, the penetration depth will be severely restricted in high power ITER discharges Because of the much larger size of ITER (compared to present experiments) – reliable modeling of the scaling of the concept to ITER is essential - This requires that we know both the size and the speed of the fragmented shards to do the penetration modeling

How does the EPI concept address present limitations? The EPI concept injects grains of material (of the required size) and at the required velocity – & it does this on a fast time scale (2-3ms) One can precisely calculate the needed size / velocity combination of a spherical particle for penetrating to the center of any given plasma, including the ITER plasma

How does the EPI system achieve the required needs for a ITER DMS? The EPI system accelerates a metallic sabot The sabot is a metallic capsule that can be accelerated to high-velocity using an electromagnetic impeller At the end of the acceleration, within 2-3ms, the sabot will release granules of known velocity and distribution – or a Shell Pellet containing smaller grains or noble gas The primary advantage of the EPI concept over SPI and other gas propelled systems is its potential to meet short warning time scales, while accurately delivering the required particle size and materials at the velocities needed for achieving the required penetration depth in high power ITER discharges.

Main components of an EPI system Sabot Payload An important advantage of the EPI system is that the ambient magnetic field of a large high-field tokamak such as ITER can be used to increase the device efficiency Injector can be positioned very close to the vessel, which further improves the system response and efficiency Payload: variable size grains of Be, B, or BN granules or a Shell Pellet, with variable velocity

How does the EPI concept scale to ITER? With increasing external magnetic field, the required current drops dramatically and approaches that for a DIII-D/NSTX-U scale experiment - The NSTX-U/DIII-D case is for 1.5g mass - The ITER case is for 15g mass (5g payload may be sufficient) The time response for attaining the required velocity is ~1.5ms for all cases The accelerator length is less than 60cm for all cases The main difference between the DIII-D and ITER cases is that the accelerated mass increases by about 5-10

Scoping Studies Suggest that an EPI Installation on ITER should be feasible* Upper Port Plug *In FNSF, inclusion of EPI from early design phase should allow installation closer to the wall to benefit from high toroidal field Pellet diverted vertically (poloidal direction) Pellet diverted horizontally R. Raman, T.R. Jarboe, J.E. Menard, et al., Fusion Science and Technol. (2015) Mid-plane Port Plug W-S Lay

Primary Components of an EPI System for ITER

Unused Pellet Removal System and New Pellet Insertion

Example of EPI System in Operation Magnetic probes located below the injector track motion of the sabot

Sabot Position Tracking using Magnetic Probes Indicates Attainment of Maximum Velocity in <2ms after Trigger Time Magnetic probes located below injector track motion of sabot

2.5ms Fast Camera Movie of Sabot Motion Note gases being pulled into to electrode region after sabot exits the electrode region

Velocity Measurements using Fast Camera Images are Consistent with Results from Magnetic Probe Signals

Measured EPI system parameters with 0 Measured EPI system parameters with 0.25T B-field augmentation in agreement with simulation predictions

FESAC TEC Questions and Answers Technology to be assessed The Electromagnetic Particle Injection system (EPI) Application of the technology To provide a means to safely shutdown a fusion reactor plasma on a fast time scale, to provide thermal and runaway electron mitigation Critical variables Fast response time of the system (2-3ms) Velocity of the payload delivered to the tokamak (200 – 1000m/s) Design variables External magnetic field augmentation (to be maximized) Capacitor bank size (to be minimized) Size of payload to be injected into the tokamak (1 to 10g)

FESAC TEC Questions and Answers – Part 2 Risks and uncertainties Need experimental verification of full system operation in a tokamak facility including remote loading and removal of used capsules Need demonstration of payload propagation through guide tube and into the center of a tokamak plasmas Maturity Close to TRL3 level maturity Demonstration of payload injection into a tokamak will bring it up to TRL6 in three years Technology development for fusion applications No new innovations are needed, but operation of an integrated system in a tokamak facility would represent new technology to protect the ITER facility

Future Work Build a dedicated magnetic field enhancing coil and increase velocity, while reducing injector current (present velocity parameters are adequate for tokamak tests) Build the sabot capture mechanism and demonstrate sabot capture. Build a suitable vacuum chamber to house the electrode system and measure performance in vacuum Implement automatic sabot removal and loading systems Conduct demonstration tests on a tokamak.

Concept Discussed With ITER Groups During Concept Inception Phase Motivation and concept details are provided in this paper: As part of the concept development we consulted with ORNL ITER Disruption Mitigation Group and with ITER Personnel Held three remote presentation meetings to inform ORNL ITER Group

EPI can Deliver Impurity Particles Deep into the Tokamak Plasma on a Fast Time-scale Electromagnetic Particle Injector (EPI) concept accelerates a metallic sabot to high velocity, which releases grains of particles of the required size and velocity The EPI system has several attractive features Fast response time of 2-3ms Can deposit payload in the center of the plasma (in the RE channel, where it is needed) Well suited for long stand-by mode operation (because it contains particles that are solid at normal temperatures) Should be very reliable (because it uses a single reliable actuator) It can be located close to vacuum vessel (because it does not rely on plasma for propulsion nor does the system contain plastics) Close installation also reduces response time (no propagation through long tube), and makes system more efficient (because it takes advantage of the external fields) Off-line setup at U-Washington has demonstrated key aspects of concept, including 150-200 m/s velocities with 1.5ms response time consistent with calculations Tokamak tests are the next logical next step for this concept to make progress