ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 41.

Slides:



Advertisements
Similar presentations
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 41 ECE
Advertisements

Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 26 ECE 6340 Intermediate EM Waves 1.
Microwave Engineering
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 30 ECE
Rectangular Waveguides
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 29 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 25 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 12 ECE
Prof. David R. Jackson Dept. of ECE Fall 2013 Notes 12 ECE 6340 Intermediate EM Waves 1.
1 ECE 6345 Spring 2011 Prof. David R. Jackson ECE Dept. Notes 2.
Notes 5 ECE Microwave Engineering Waveguides Part 2:
Rectangular Waveguides
Prof. David R. Jackson ECE Dept. Spring 2014 Notes 37 ECE
1 Spring 2011 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept.
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 14 ECE 3318 Applied Electricity and Magnetism 1.
Spring 2015 Notes 6 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Spring 2015 Notes 1 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 29 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson Dept. of ECE Fall 2015 Notes 22 ECE 6340 Intermediate EM Waves 1.
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 37 ECE
Prof. David R. Jackson ECE Dept. Spring 2016 Notes 42 ECE 6341 Notes 44 1.
Spring 2015 Notes 25 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Spring 2015 Notes 32 ECE 6345 Prof. David R. Jackson ECE Dept. 1.
Notes 22 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 15.
Notes 27 ECE 6340 Intermediate EM Waves Fall 2016
Applied Electricity and Magnetism
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 20.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 17.
ECE 6345 Fall 2015 Prof. David R. Jackson ECE Dept. Notes 11.
Microwave Engineering by David M. Pozar Ch. 4.1 ~ 4 / 4.6
Applied Electricity and Magnetism
Applied Electricity and Magnetism
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 12.
Notes 5 ECE Microwave Engineering Waveguides Part 2:
Notes 12 ECE 6340 Intermediate EM Waves Fall 2016
Notes 29 ECE 6340 Intermediate EM Waves Fall 2016
Notes 9 ECE 6340 Intermediate EM Waves Fall 2016
Microwave Engineering
Notes 17 ECE 6340 Intermediate EM Waves Fall 2016
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 39.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 15.
Microwave Engineering
Notes 42 Notes 46 ECE 6341 Spring 2016 Prof. David R. Jackson
Microwave Engineering
Microwave Engineering
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 42.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 35.
Microwave Engineering
Microwave Engineering
Microwave Engineering
Notes 48 Notes 42 ECE 6341 Spring 2016 Prof. David R. Jackson
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 38.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 40.
Applied Electromagnetic Waves
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 30.
Applied Electromagnetic Waves Rectangular Waveguides
Bessel Function Examples
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 4.
Applied Electromagnetic Waves Waveguiding Structures
Applied Electromagnetic Waves
Notes 6 ECE 3318 Applied Electricity and Magnetism Coordinate Systems
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 11.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 18.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 34.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 3.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 29.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 27.
ECE 6345 Spring 2015 Prof. David R. Jackson ECE Dept. Notes 31.
ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 16.
Presentation transcript:

ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 41

Patch Antenna In this set of notes we do the following: Find the field Ex produced by the patch current on the interface Find the field Ez inside the substrate Find the voltage between the patch and the ground plane Find the input impedance of the patch (when fed by a probe) Assume that the patch current has the following form:

Calculate the Field Ex Find Dominant (1,0) mode:

Field Ex (cont.) Recall that In this problem

Field Ex (cont.)

Field Ex (cont.)

Field Ex (cont.)

Field Ex (cont.) At z = 0: Hence

Field Ex (cont.) Hence, we have:

Field Ex (cont.) Taking the inverse Fourier transform, we have

Find Ez (x,y,z) inside the substrate (-h < z < 0) Field Ez Find Ez (x,y,z) inside the substrate (-h < z < 0) Dominant (1,0) mode:

Field Ez (cont.) From Notes 40 we have:

Note: Only TMz waves contribute to the vertical electric field. Field Ez (cont.) Hence, in the space domain we have Note: Only TMz waves contribute to the vertical electric field. From Notes 40:

Find V (x,y) between the patch and the ground plane. Voltage Find V (x,y) between the patch and the ground plane. Dominant (1,0) mode:

Voltage (cont.) Using the result from the previous calculation for Ez, we have: where From Notes 40:

Find the input impedance Zin (x0,y0) of the probe-fed patch antenna The probe is viewed as an impressed current.

Input Impedance (cont.) Set This is the “Electric Field Integral Equation (EFIE)”

Input Impedance (cont.) Assume: Ax is an unknown amplitude. The EFIE is then Pick a “testing” function T (x,y): or

Input Impedance (cont.) Galerkin’s Method: (The testing function is the same as the basis function.) Hence, we have: The solution for the unknown amplitude coefficient Ax is then

Input Impedance (cont.) The input impedance is calculated as: From linearity, we have where From the last example:

Input Impedance (cont.) Next, we return to the calculation of Ax: From reciprocity: From the formula for the field Ex:

Input Impedance (cont.) Summary

Input Impedance (cont.) Converting to polar coordinates, we have:

Input Impedance (cont.) The path of integration is shown below. Note: The path must extend to infinity.

Input Impedance (cont.) Improvement: Add probe reactance to account for the stored magnetic energy near the metal probe.

Input Impedance (cont.) D. M. Pozar, “Input impedance and mutual coupling of rectangular microstrip antennas,” IEEE Trans. Antennas Propagat., vol. AP-30. pp. 1191-1196, Nov. 1982. [6] E. H. Newman and P. Tulyathan, “Analysis of microstrip antennas using moment methods,” IEEE Trans. Antennas Propagat., vol. AP-29. pp. 47-53, Jan. 1981.