The Pure Rotational Spectrum of KO

Slides:



Advertisements
Similar presentations
June , th International Symposium on Molecular Spectroscopy Millimeter and Sub-millimeter Spectroscopy of CrCCH (X 6 Σ + ) Jie Min and L.M.
Advertisements

FOURIER TRANSFORM EMISSION SPECTROSCOPY AND AB INITIO CALCULATIONS ON WO R. S. Ram, Department of Chemistry, University of Arizona J. Liévin, Université.
June 26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of ZnS (X 1  + ) Lindsay N. Zack Lucy M. Ziurys Department.
High Resolution Laser Induced Fluorescence Spectroscopic Study of RuF Timothy C. Steimle, Wilton L. Virgo Tongmei Ma The 60 th International Symposium.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL ACETYLIDES P. M. SHERIDAN, M. K. L. BINNS Department of Chemistry and Biochemistry, Canisius College.
June 22-26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of ZnO in the excited a 3  i State Lindsay N. Zack,
61 st Symposium on Molecular Spectroscopy June 22, 2006 Completing the 3d Metal Fluoride Series: Pure Rotational Spectroscopy of ZnF (X 2  + ) Michael.
Millimeter-Wave Studies of the Isotopologues of IZnCH 3 (X 1 A 1 ) : Geometric Parameters and Evidence for Zinc Insertion M. P. BUCCHINO and L. M. ZIURYS.
Electron Paramagnetic Resonance at Hunter College
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Anh T. Le and Timothy C. Steimle The electric dipole moment of Iridium monosilicide, IrSi Department of Chemistry and Biochemistry, Arizona State University,
June 22, th Symp. on Molec. Spectrosc. Laboratory Detection of ClZnCH 3 (X 1 A 1 ): Further Evidence for Zinc Insertion Matthew P. Bucchino and.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
The Millimeter/Submillimeter Spectrum of the CCP (X 2  r ) Radical DeWayne T. Halfen Steward Observatory, Arizona Radio Observatory, University of Arizona.
Stark Study of the F 4     X 4  7/2 (1,0) band of FeH Jinhai Chen and Timothy C. Steimle Dept. of Chemistry& BioChem, Arizona State University,
Laser Excitation and Fourier Transform Emission Spectroscopy of ScS R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ J. Gengler,
June 18, nd Symp. on Molec. Spectrosc. The Pure Rotational Spectra of VN (X 3  r ) and VO (X 4  - ): A Study of the Hyperfine Interactions Michael.
June 22-26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of CrS (X 5  r ): Continued Studies of the 3d Transition.
FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF ALKALI METAL HYDROSULFIDES: DETECTION OF KSH P. M. SHERIDAN, M. K. L. BINNS, J. P. YOUNG Department of Chemistry.
62 nd International Symposium on Molecular Spectroscopy June 18-22, 2007 The Pure Rotational Spectra of FeCN (X 6  i ) and FeNC (X 6  i ): It Had to.
THE PURE ROTATIONAL SPECTRA OF THE TWO LOWEST ENERGY CONFORMERS OF n-BUTYL ETHYL ETHER. B. E. Long, G. S. Grubbs II, and S. A. Cooke RH13.
A New E-Band (60 – 90 GHz) Fourier Transform Millimeter-wave Spectrometer DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department of Astronomy.
441 Chem Introduction to Spectroscopy CH-1 1. Introduction to Spectroscopy Set of methods where interaction of electromagnetic radiation with chemical.
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
June 16-20, rd International Symposium on Molecular Spectroscopy Direct Measurements of the Fundamental Rotational Transitions of CD and 13 CH.
June 21, th International Symposium on Molecular Spectroscopy Detection of FeCN (X 4  i ) in the Circumstellar Envelope of IRC Lindsay N.
65 th International Symposium on Molecular Spectroscopy June 21, 2010 Lindsay N. Zack Brent J. Harris Matthew P. Bucchino Ming Sun Lucy M Ziurys Department.
63rd Symposium on Molecular Spectroscopy June 18, 2008 Submillimeter Spectroscopy of ZnO (X 1  + ) Lindsay N. Zack Robin L. Pulliam Lucy M. Ziurys Departments.
June 21, th International Symposium on Molecular Spectroscopy Fourier-Transform Microwave Spectroscopy of FeCN (X 4  i ): Confirmation of the.
The Pure Rotational Spectrum of TiCl + (X 3  r ) by Velocity Modulation Spectroscopy DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department.
61 st Symposium on Molecular Spectroscopy June 19, 2006  -doubling in High Angular Momentum States: High Resolution Spectroscopy of CoF (X 3  i ) M.
June 25, th International Symposium on Molecular Spectroscopy Hyperfine Resolved Pure Rotational Spectroscopy of ScN, YN, and BaNH (X 1  + ):
June 18, rd International Symposium On Molecular Spectroscopy Gas-Phase Rotational Spectrum Of HZnCN (Χ 1 Σ + ) by Fourier Transform Microwave Techniques.
June 20, rd International Symposium On Molecular Spectroscopy Microwave Spectrum And Structure Determination Of the CCP ( X 2 П Ω ) Radical Ming.
Fourier Transform Emission Spectroscopy of Some New Bands of ReN R. S. Ram Department of Chemistry, University of Arizona, Tucson, AZ and P. F. Bernath.
June 22-26, th International Symposium on Molecular Spectroscopy The Pure Rotational Spectrum of TiS (X 3  r ) in all Three Spin Components Robin.
Optical Stark Spectroscopy and Hyperfine study of Gold Chrolride (AuCl) Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy.
Pure Rotational Spectra of the Rare Isotopologues of TiO (X 3 Δ r ) Andrew P. Lincowski, DeWayne T. Halfen, and Lucy M. Ziurys Department of Chemistry.
Dept. of Chemistry University of Arizona A. Janczyk L. M. Ziurys The Millimeter/Submillimeter Spectrum of AlSH (X 1 A) : Further Investigation of the Metal.
June 18, nd Symp. on Molec. Spectrosc. Activation of C-H Bonds: Pure Rotational Spectroscopy of HZnCH 3 ( 1 A 1 ) M. A. Flory A. J. Apponi and.
Fast Sweeping Double Resonance Microwave - (sub)Millimeter Spectrometer Based on Chirped Pulse Technology Brian Hays 1, Susanna Widicus Weaver 1, Steve.
The Submillimeter/THz Spectrum of AlH (X 1 Σ + ), CrH (X 6 Σ + ), and SH + (X 3 Σ - ) DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry and.
65th International Symposium on Molecular Spectroscopy June 21 – 25, 2010 Exotic Metal Molecules In Oxygen-Rich Envelopes: Detection of AlOH(X 1 Σ + )
Digital Control System for Microwave Spectroscopy Data Collection Amanda Olmut Dr. Stephen Kukolich, Principle Investigator Dr. Adam Daly, Project Lead.
THE PURE ROTATIONAL SPECTRUM OF PERFLUOROOCTANONITRILE, C 7 F 15 CN, STUDIED USING CAVITY- AND CHIRPED-PULSED FOURIER TRANSFORM MICROWAVE SPECTROSCOPIES.
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Christopher T. Dewberry, Garry S
CAVITY AND CHIRPED PULSE ROTATIONAL SPECTRUM OF THE LASER ABLATION SYNTHESIZED, OPEN-SHELL MOLECULE TIN MONOCHLORIDE, SnCl G. S. GRUBBS II, DANIEL J. FROHMAN,
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
Jack C. Harms, Leah C. O’Brien,* and James J. O’Brien
Characterisation and Control of Cold Chiral Compounds
Carlos Cabezas and Yasuki Endo
Spectroscopy in support of parity nonconservation measurements: the A2Π-X2Σ+(0,0) of Barium Monofluoride Anh T. Le, Sarah Frey and Timothy C. Steimle Department.
MICROWAVE FREQUENCY TRANSITIONS REQUIRING LASER ABLATED URANIUM METAL DISCOVERED USING CHIRP-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY B. E. Long.
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
HCO+ in the Helix Nebula
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Jinjun Liu, Ming-Wei Chen, John T. Yi,
MOLECULAR BEAM OPTICAL ZEEMAN SPECTROSCOPY OF VANADIUM MONOXIDE, VO
Laser spectroscopy and ab initio calculations on TaF
The Pure Rotational Spectrum of FeO+ (X6S+)
Fourier Transform Infrared Spectral
Fourier Transform Microwave Spectroscopy Of Sc13C2 and Sc12C13C: Establishing an Accurate Structure Of ScC2 (X2A1) ~ Sc C Mark A. Burton, DeWayne T. Halfen,
HIGH RESOLUTION LASER SPECTROSCOPY OF NICKEL MONOBORIDE, NiB
Michael A. Flory Shawn K. McLamarrah Lucy M. Ziurys
THE MICROWAVE SPECTRUM AND UNEXPECTED STRUCTURE OF THE BIMOLECULAR COMPLEX FORMED BETWEEN ACETYLENE AND (Z)-1-CHLORO-2-FLUOROETHYLENE Nazir D. Khan, Helen.
DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry
Presentation transcript:

The Pure Rotational Spectrum of KO June 21st, 2017 2Π3/2 2Π1/2 2Σ1/2 + The Pure Rotational Spectrum of KO Mark A. Burton, Benjamin Russ, Phillip M. Sheridan, Matthew Bucchino, and Lucy M. Ziurys Department of Chemistry and Biochemistry, University of Arizona Department of Chemistry and Biochemistry, Canisius College Oxides Spectroscopic candy; halides horderves; carbides good stuff. KO is like an exotic bitter chocolate deceptive What we have done…and hopefully this leads to a more definitive understanding of KO.

KO, why? Periodic trends Astronomically Theory June 21st, 2017 KO, why? Periodic trends KO is one remaining oxide not fully understood Astronomically KCl and KCN in IRC+10216 Theory Help understand interacting electronic states (~250 cm-1) Which is ground state? VY Canis Majoris 2Π 2Σ+

Chemistry of Alkali Monoxides June 21st, 2017 Chemistry of Alkali Monoxides 2Π 2Σ+ ? 2Σ+ ground state Scattering Ionization technique Herm, R. R.; Herschbach, D. R. J. Chem. Phys. 1970, 52, 5783 Numerical Hartree-Fock and SDCI Langhoff, S. R.; Bauschlicher Jr., C. W.; Partridge, H. J. Chem. Phys. 1986, 84, 4474 High-level restricted coupled cluster with SO interactions Lee, E. P. F.; Soldán, P.; Wright, T. G. J. Chem. Phys. 2002, 117, 8241. Electron Spin Resonance Lindsay, D. M.; Herschbach, D. R.; Kwiram, A. L. J. Chem. Phys. 1974, 60, 315 Ultraviolet Photoelectron Spectroscopy Wright, T. G.; Ellis, A. M.; Dyke, J. M. J. Chem. Phys. 1993, 98, 2891 Ab initio (configuration interaction) Allison, J. N.; Goddard III, W. A. J. Chem. Phys. 1982, 77, 4259 2Π ground state

Millimeter/Submillimeter-wave Direct Absorption Spectroscopy June 21st, 2017 Millimeter/Submillimeter-wave Direct Absorption Spectroscopy 65 - 850 GHz ~1700 0C 110 MHz in 70 sec ±50 kHz resolution Binding energy D) reactant gas E) rooftop reflector F) Broida-type oven G) bolometer A) Frequency source B) polarizing grid C) pump outlet

Best reactions conditions: 2 mtorr N2O and 20 mtorr Ar, No discharge June 21st, 2017 Best reactions conditions: 2 mtorr N2O and 20 mtorr Ar, No discharge Also tried N2O + discharge and O2 + discharge Liquid potassium Lots of contaminating lines! Expected large L-doubling (2P) and spin-rotation splittings (2S+)

June 21st, 2017 Troubles on the Job Process of collecting and identifying lines: 165 GHz Interaction between Ω = ½ states Potassium is very reactive Benjamin Russ Dr. DeWayne Halfen

Observed Millimeter-wave Transitions June 21st, 2017 Observed Millimeter-wave Transitions J″ → J′ Λ-doubling νobs (MHz) νobs-νcalc 7.5 8.5 e 139877.081 -0.076 f 139889.716 0.001 8.5 9.5 157756.041 0.086 157622.630 -0.150 9.5 10.5 172677..620 -0.088 172618.336 0.111 10.5 11.5 189458.345 0.044 189399.761 0.040 11.5 12.5 205878.601 -0.002 205936.063 0.099 12.5 13.5 222410.982 -0.021 222344.182 0.033 13.5 14.5 238777.234 0.073 238854.142 -0.077 14.5 15.5 255292.289 -0.130 255214.530 0.078 15.5 16.5 271454.905 0.055 271528.292 -0.132 16.5 17.5 288080.030 -0.039 287921.226 17.5 18.5 304432.220 -0.120 304565.375 0.169 J = 16.5 ← 15.5 J = 17.5 ← 16.5 J = 15.5 ← 14.5 H eff = H rot + H cd + H LD Hund’s Case A Frequency (MHz)

2Π3/2 Rotational Parameters June 21st, 2017 2Π3/2 Rotational Parameters Parameter 2Π3/2 (MHz) B 8535.5625(57) DJ 0.011623(28) HJ 1.770(42)x10-6 qeff -0.2329(25) qD 2.78(56)x10-6 rms 0.100  r=2.336 Å re (Å) LiO (2Π) 1.68822159(2) NaO (2Π) 2.051548(1) KO r3/2 = 2.336 RbO (2Σ+) 2.2541931(15) CsO (2Σ+) 2.300745(16)

We need the 2Σ+ rotational transitions June 21st, 2017 r3/2 = 2.336 2Π1/2 2Πi 2Σ+ 2Σ+ will have large Spin-Orbit interaction Is 2Π the ground state? We need the 2Σ+ rotational transitions 2Π3/2 2Σ+1/2 r3/2 = 2.330 *not to scale r1/2 = 2.261 Lee, E. P. F.; Soldán, P.; Wright, T. G. What is the Ground Electronic State of KO? J. Chem. Phys. 2002, 117, 8241.

Conclusions/Future Work June 21st, 2017 Conclusions/Future Work Bond length is r3/2=2.326 Å 2Π3/2 may not be the ground state 2S+ will have large spin-orbit interaction Only controlled explosions = Lucy is happy Search for rotational transitions in the 2Π1/2 and 2Σ+1/2 states Record lower J transitions in 2Π3/2 state and resolve hyperfine Identify the ground state → LA-FTMW Conduct radioastronomical search for KO

NSF, NASA, University of Arizona, and Canisius College June 21st, 2017 Acknowledgements Dr. Lucy Ziurys Dr. DeWayne Halfen Dr. Phil Sheridan Dr. Matthew Bucchino Benjamin Russ Kyle Kilchenstein John Keogh Debbie Schmidt Tyler Hermann Jacob Bernal NSF, NASA, University of Arizona, and Canisius College

Fourier Transform Microwave (FTMW) Carrier Gas Laser Pulse Poppet Sample Rod Low Noise Amplifier Computer Pulsed Valve figure modified from: Sun, M.; Halfen, D. T.; et. al. The Rotational Spectrum of CuCCH: A Fourier Transform Microwave Discharge Assisted Laser Ablation Spectroscopy and Millimeter/Submillimeter Study. J. Chem. Phys, 2010, 133, 174301

17.5  16.5 16.5  15.5 15.5  14.5

Is 2Π the ground state? We need the 2Σ+ June 21st, 2017 Lee, E. P. F.; Soldán, P.; Wright, T. G. What is the Ground Electronic State of KO? J. Chem. Phys. 117, 8241.