Modeling Radiation Damage Effects in Oxygenated Silicon Detectors

Slides:



Advertisements
Similar presentations
Radiation Damage in Sentaurus TCAD
Advertisements

Semiconductor detectors
Epitaxial Silicon Detectors for Particle Tracking Overview on Radiation Tolerance at Extreme Hadron Fluence G. Lindström (a), E. Fretwurst (a), F. Hönniger.
TCT study of silicon epitaxial and MCZ detectors V. Eremin 1, M. Boscardin 2, M. Bruzzi 3, D. Creanza 4, A. Macchiolo 5, D. Menichelli 3, C. Piemonte 2,
Università degli Studi di Perugia Università degli Studi di Perugia IMM Bologna 1 Measurements and Simulations of Charge Collection Efficiency of p+/n.
REACTIONS OF INTERSTITIAL CARBON WITH BACKGROUND IMPURITIES IN N- AND P-TYPE SILICON STRUCTURES L.F. Makarenko*, L.I. Murin**, M. Moll***, F.P. Korshunov**,
Trapping in silicon detectors G. Kramberger Jožef Stefan Institute, Ljubljana Slovenia G. Kramberger, Trapping in silicon detectors, Aug , 2006,
Radiation Damage to Silicon Sensors DCC 11/14/02 DRAFT.
F.R.Palomo, et al.MOS Capacitor DDD Dosimeter 1/13 RD50 Workshop - CERN – November 2012 MOS Capacitor Displacement Damage Dose (DDD) Dosimeter F.R.
William Cunningham Properties of SiC radiation detectors W. Cunningham a, J. Melone a, V.Kazukauskas b,c P. Roy a, F. Doherty a, M. Glaser d, J.Vaitkus.
Department of Physics VERTEX 2002 – Hawaii, 3-7 Nov Outline: Introduction ISE simulation of non-irradiated and irradiated devices Non-homogeneous.
Characterization of 150  m thick epitaxial silicon pad detectors from different producers after 24 GeV/c proton irradiation Herbert Hoedlmoser (1), Michael.
Wide Bandgap Semiconductor Detectors for Harsh Radiation Environments
1Ruđer Bošković Institute, Zagreb, Croatia
F.R.PalomoDevice Simulation Meeting 1/22 CERN 7th July New 3D Detectors.
Detectors and electronics for Super-LHC: IRRADIATION RESULTS Andrea Candelori INFN Sezione di Padova.
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
KINETICS OF INTERSTITIAL CARBON ANNEALING AND MONITORING OF OXYGEN DISTRIBUTION IN SILICON PARTICLE DETECTORS L.F. Makarenko*, M. Moll**, F.P. Korshunov***,
RD50 Katharina Kaska1 Trento Workshop : Materials and basic measurement problems Katharina Kaska.
Study of leakage current and effective dopant concentration in irradiated epi-Si detectors I. Dolenc, V. Cindro, G. Kramberger, I. Mandić, M. Mikuž Jožef.
Development of semiconductor detectors for very harsh
M. Bruzzi et al. Thermal donors in MCz Si, Trento Meeting Rd50 February 28, 2005 Mara Bruzzi, D. Menichelli, M. Scaringella INFN Florence, University of.
TCAD Simulations of Radiation Damage Effects at High Fluences in Silicon Detectors with Sentaurus TCAD D. Passeri(1,2), F. Moscatelli(2,3), A. Morozzi(1,2),
M. Bruzzi, the issue of p-type disuniformity, 7° RD50 Workshop, CERN, November 14-16, 2005 The issue of doping disuniformity in p-type MCz Si sensors M.
D. Menichelli, RD50, Hamburg, august TSC, DLTS and transient analysis in MCz silicon Detectors at different process temperature, irradiation.
Trento, Feb.28, 2005 Workshop on p-type detectors 1 Comprehensive Radiation Damage Modeling of Silicon Detectors Petasecca M. 1,3, Moscatelli F. 1,2,3,
1 Space charge sign inversion and electric field reconstruction in 24 GeV proton irradiated MCZ Si p + -n(TD)-n + detectors processed via thermal donor.
Analysis of electron mobility dependence on electron and neutron irradiation in silicon J.V.VAITKUS, A.MEKYS, V.RUMBAUSKAS, J.STORASTA, Institute of Applied.
Simulations of 3D detectors
Charge Collection and Trapping in Epitaxial Silicon Detectors after Neutron-Irradiation Thomas Pöhlsen, Julian Becker, Eckhart Fretwurst, Robert Klanner,
G. Steinbrück, University of Hamburg, SLHC Workshop, Perugia, 3-4 April Epitaxial Silicon Detectors for Particle Tracking Overview on Radiation Tolerance.
Ioana Pintilie, Vilnius 2-6 june Defect investigation on MCz after 1 MeV neutron irradiation I. Pintilie 1, E. Fretwurst 2, A. Junkes 2 and G. Lindstroem.
New research activity “Silicon detectors modeling in RD50”: goals, tasks and the first steps Vladimir Eremin Ioffe Phisical – technical institute St. Petresburg,
INFN and University of Perugia Characterization of radiation damage effects in silicon detectors at High Fluence HL-LHC D. Passeri (1,2), F. Moscatelli.
Inversion Study on MCz-n and MCz-p silicon PAD detectors irradiated with 24 GeV/c protons Nicola Pacifico Excerpt from the MSc thesis Tutors: Prof. Mauro.
Defect Engineering and Pad Detector Characterization Defect engineering: Search for hydrogen enrichment in silicon is still ongoing but takes time High.
Annealing of CCE in HPK strip detectors irradiated with pions and neutrons Igor Mandić 1, Vladimir Cindro 1, Andrej Gorišek 1, Gregor Kramberger 1, Marko.
Simulations of Hadron Irradiation Effects for Si Sensors Using Effective Bulk Damage Model A. Bhardwaj 1, H. Neugebauer 2, R. Dalal 1, M. Moll 2, Geetika.
TSC results - University of Hamburg I. Pintilie a),b), E. Fretwurst b), G. Lindström b) J. Stahl b) and F. Hoenniger b) a) National Institute of Materials.
SMART Study of radiation damage induced by 24GeV/c and 26MeV protons on heavily irradiated MCz and FZ silicon detectors V. Radicci Dipartimento Interateneo.
J.Vaitkus et al. PC spectra. CERN RD50 Workshop, Ljubljana, "Analysis of deep level system transformation by photoionization spectroscopy"
Radiation Damage Quick Study Edward Cazalas 3/27/13.
7 th RD50 Workshop CERN Geneva November Università degli Studi Università degli Studi di Perugia di Perugia 1 Radiation Hardness of Minimum.
Hartmut F.-W. Sadrozinski, US ATLAS Upgrade Meeting Nov 10, Tracking Detector Material Issues for the sLHC Hartmut F.-W. Sadrozinski SCIPP, UC Santa.
Fluence and isochronal anneal dependent variations of recombination and DLTS characteristics in neutron and proton irradiated MCz, FZ and epi-Si structures.
Double Electric field Peak Simulation of Irradiated Detectors Using Silvaco Ashutosh Bhardwaj, Kirti Ranjan, Ranjeet Singh*, Ram K. Shivpuri Center for.
Deep Level Transient Spectroscopy study of 3D silicon Mahfuza Ahmed.
G. PellegriniInstituto de Microelectrónica de Barcelona Status of LGAD RD50 projects at CNM28th RD50 Workshop (Torino) 1 Status of LGAD RD50 projects at.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
Simulation results from double-sided and standard 3D detectors
Ioana Pintilie, 11 th RD50 Workshop, November 2007, Geneve
Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors
First Investigation of Lithium Drifted Si Detectors
Otilia Militaru Université catholique de Louvain, Belgium
Summary of research activities
Radiation Damage TCAD Analysis of Low Gain Avalanche Detectors
PTI results on I(T) and E(x) simulations with two midgap energy levels
ADvanced MOnolithic Sensors for
Study of radiation damage induced by 26MeV protons and reactor neutrons on heavily irradiated MCz, FZ and Epi silicon detectors N. Manna Dipartimento.
HG-Cal Simulation using Silvaco TCAD tool at Delhi University Chakresh Jain, Geetika Jain, Ranjeet Dalal, Ashutosh Bhardwaj, Kirti Ranjan CMS simulation.
Study of radiation damage induced by 24/c GeV and 26MeV protons on heavily irradiated MCz and FZ silicon detectors N. Manna Dipartimento Interateneo di.
Homogeneity and thermal donors in p-type MCz-Si detector materials
Results from the first diode irradiation and status of bonding tests
16th RD 50 Workshop - Barcelona, 31 May - 2 June 2010
Electrically active defects in 4H-SiC
TCAD Simulations of Silicon Detectors operating at High Fluences D
Radiation Tolerant Tracking Detectors
Radiation Damage in Silicon
Vladimir Cindro, RD50 Workshop, Prague, June 26-28, 2006
The WODEAN project – outline and present status
Presentation transcript:

Modeling Radiation Damage Effects in Oxygenated Silicon Detectors M. Petasecca (1,2), G.U. Pignatel (1,2), G. Caprai (1), D. Passeri (1,2) (1) University of Perugia, via G.Duranti 93 - 06125 Perugia ITALY (2) INFN sez. Perugia, via Pascoli 10 – 06120 Perugia ITALY

OUTLINE Introduction: modeling set-up Summary of present p-type and n-type Silicon radiation damage models Results on proton irradiated FZ Oxygen Enriched Silicon (DOFZ) Conclusions

Geometrical Definition of the simulated structure Introduction Geometrical Definition of the simulated structure Sample structure: PAD detector with a Guard Ring (1μm torward the 3rd direction) <111> FZ – Substrate: n-doped (71011 cm-3) 6kΩcm p-doped (51012 cm-3) 3kΩcm Charge concentration at the silicon-oxide interface: 4 1011 cm-3 pre-irradiation 1 1012 cm-3 post-irradiation 30μm 3μm 5μm D Back contact Front contact Thickness: p-type devices D = 300µm n-type devices with different thickness: D = 50-100-300 µm

Defect Energy Levels Introduction Assignement Energy Level Conc. VO(-/0) Ec-0.17±0.01 eV 67x1011cm-3/Mrad ** V2(-/0) (neutron irradiation) Ec-0.415±0.015 eV 1.0x1010cm-3/Mrad ** E(240) V2O(-/0) (gamma irradiation) Ec-0.545 eV 0.8x109 cm-3 *** Γ - (V2O - V3 ?) (p+,e- irradiation) Ec-0.46 eV 9.6x109 cm-3 * H(160) CiOi (+/0) Ev+0.37±0.01 eV 47x1010 cm-3/Mrad ** VO, always present in DLTS spectra, important because VO+VV2O [*] CERN-LHCC-2003-058 RD50 Status Report 2003. [**] Pintilie Ioana, RESMDD’06, Florence 10-13 October 2006. [***] visible only on high resistivity Si above 15Mrad of  irradiation. [*] Pirollo et al. “Radiation damage on p-type silicon detectors” NIM A 426 (1999)

Radiation Damage Model: P-TYPE Si Level Ass. σn(cm2) σp(cm2) (cm-1) Ref. EC – 0,42eV VV(-/0) 2e-15 2e-14 1,613 [2] EC – 0,46eV VVV(-/0) 5e-15 5e-14 0,9 [1,3] EV + 0,36eV CiOi 2,5e-14 2,5e-15 [1,2,3] Note: in p-type Si the 0.46 level is not attributed to V2O but to V3 (vacancy related defects) [1] Pirollo et al. “Radiation damage on p-type silicon detectors” NIM A 426 (1999) [2] Zangenberg et al “On-line DLTS investigations of the mono and divacancy in p-type Si” NIM B 186 (2002) [3] Ahmed et al. “DLTS studies of Si detectors after 24GeV p irradiation and 1 MeV neutron irradiation” NIMA 457 (2001)

Radiation Damage Model: N-TYPE Si Level Ass. σn(cm2) σp(cm2) (cm-1) Ref. EC – 0,42eV VV(-/0) 2.2e-15 1.2e-14 13 [*] EC – 0,50eV V2O 4e-15 3.5e-14 0.08 EV + 0,36eV CiOi 2e-18 2.5e-15 1.1 [*] M.Petasecca, F.Moscatelli, D.Passeri, and G.U.Pignatel, IEEE TNS 53-5 (2006) 1-6. Non standard FZ! High Oxygen Conc. samples from SMART collaboration

Standard FZ n-type Si, 23GeV proton irradiated [WE – 7k] Neff0 = 7 x 1011 cm-3 gC*N0 =0,03 (donor removal constant) ρ = 6 kΩcm (substrate resistivity) [Oi] < 35 x 1016[cm-3] crystal orientation <111> Experimental data from Lindstrom G. et al., NIM A 466 (2001) – RD48-ROSE

Level Ass. σn(cm2) σp(cm2) (cm-1) EC – 0,42eV VV(-/0) 2e-15 1,2e-14 13 EC – 0,53eV VVO 5e-15 5e-14 0,08 EV + 0,36eV CiOi 2,5e-14 2,5e-15 1,1

DOFZ n-type Si, 23 GeV proton irradiated Oxigen rich Fz n-Type [WS – 3k] Neff0=1,5 x 1012 cm-3 gC * N0 = 0,03 (donor removal constant) ρ = 3 kΩcm (substrate resistivity) [Oi] = 1.5 x 1017[cm-3] crystal orientation <111> Ratio of acceptors Introduction rates between Standard-FZ and Oxigenated-FZ (DOFZ)

Comparison between Stand Comparison between Stand. FZ (n-type) and DOFZ Si, 23GeV proton irradiated Ec-0.53eV

Conclusions All the simulations made so far, compared with experimental data, are consistent with the following defect model scenario: V2  Ec-0.42  0.43eV ( >>1  n irrad., clusters) CiOi  Ev+0.36eV (trap for holes  CCE)  (V2O or V3 ?)  Ec-0.46eV (p,e irradiation) V2O  Ec-0.53  0.545eV (p,γ irradiation) V2O level very sensitive to initial O2 concentration ! p-type puzzle: Ec-0.46 is NOT attributed to V2O (!?!) Oxygenated p-type ?