Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Spinor condensates beyond mean-field
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Dipolar interactions in F=1 ferromagnetic spinor condensates. Roton instabilities and possible supersolid phase Eugene Demler Harvard University Funded.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
All-optical production of chromium BECs Bessel Engineering of Chromium Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Experimental study of Efimov scenario in ultracold bosonic lithium
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Dipolar chromium BECs, and magnetism
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
For long wavelength, compared to the size of the atom The term containing A 2 in the dipole approximation does not involve atomic operators, consequently.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Magnetization dynamics in dipolar chromium BECs
Matter-wave droplets in a dipolar Bose-Einstein condensate
BEC-BCS cross-over in the exciton gas
Laboratoire de Physique des Lasers
Novel quantum states in spin-orbit coupled quantum gases
One-Dimensional Bose Gases with N-Body Attractive Interactions
Atomic BEC in microtraps: Squeezing & visibility in interferometry
Spectroscopy of ultracold bosons by periodic lattice modulations
Chromium Dipoles in Optical Lattices
Kenji Kamide* and Tetsuo Ogawa
Presentation transcript:

Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra, E. Maréchal, L. Vernac, P. Pedri (Theory), O. Gorceix (Group leader) Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov , Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) 1 1 1 1

Chromium (S=3): Van-der-Waals plus dipole-dipole interactions Long range Anisotropic R Relative strength of dipole-dipole and Van-der-Waals interactions Cr: 2 2

Relative strength of dipole-dipole and Van-der-Waals interactions BEC collapses Stuttgart: Tune contact interactions using Feshbach resonances (Nature. 448, 672 (2007)) R Anisotropic explosion pattern reveals dipolar coupling. Stuttgart: d-wave collapse, PRL 101, 080401 (2008) See also Er PRL, 108, 210401 (2012) See also Dy, PRL, 107, 190401 (2012) … and Dy Fermi sea PRL, 108, 215301 (2012) BEC stable despite attractive part of dipole-dipole interactions Cr:

Hydrodynamic properties of a BEC with weak dipole-dipole interactions Striction Stuttgart, PRL 95, 150406 (2005) Collective excitations Villetaneuse, PRL 105, 040404 (2010) Anisotropic speed of sound Bragg spectroscopy Villetaneuse arXiv: 1205.6305 (2012) Interesting but weak effects in a scalar Cr BEC 4

Dipolar interactions introduce magnetization-changing collisions without 1 Dipole-dipole interactions -1 3 with 2 R 1 -1 -2 -3

In a finite magnetic field: Fermi golden rule (losses) B=0: Rabi -3 -2 -1 0 1 2 3 In a finite magnetic field: Fermi golden rule (losses) -3 -2 -1 1 2 3 (x1000 compared to alkalis)

Dipolar relaxation, rotation, and magnetic field Angular momentum conservation -3 -2 -1 1 2 3 Rotate the BEC ? Spontaneous creation of vortices ? Einstein-de-Haas effect Important to control magnetic field Ueda, PRL 96, 080405 (2006) Santos PRL 96, 190404 (2006) Gajda, PRL 99, 130401 (2007) B. Sun and L. You, PRL 99, 150402 (2007) 7 7

Particle leaves the trap B=1G Particle leaves the trap -3 -2 -1 1 2 3 B=10 mG Energy gain matches band excitation in a lattice B=.1 mG Energy gain equals to chemical potential in BEC

S=3 Spinor physics with free magnetization New features with Cr: S=3 spinor (7 Zeeman states, four scattering lengths, a6, a4, a2, a0) No hyperfine structure Free magnetization Magnetic field matters ! Alkalis : - S=1 and S=2 only - Constant magnetization (exchange interactions) Linear Zeeman effect irrelevant Technical challenges : Good control of magnetic field needed (down to 100 mG) Active feedback with fluxgate sensors Low atom number – 10 000 atoms in 7 Zeeman states

S=3 Spinor physics with free magnetization New features with Cr: S=3 spinor (7 Zeeman states, four scattering lengths, a6, a4, a2, a0) No hyperfine structure Free magnetization Magnetic field matters ! Alkalis : - S=1 and S=2 only - Constant magnetization (exchange interactions) Linear Zeeman effect irrelevant 1 Spinor physics of a Bose gas with free magnetization Thermodynamics: how magnetization depends on temperature Spontaneous depolarization of the BEC due to spin-dependent interactions 2 Magnetism in opical lattices Depolarized ground state at low magnetic field Spin and magnetization dynamics

Spin temperature equilibriates with mechanical degrees of freedom At low magnetic field: spin thermally activated -1 1 -2 -3 2 3 -3 -2 -1 0 1 2 3 We measure spin-temperature by fitting the mS population (separated by Stern-Gerlach technique) 11

Spontaneous magnetization due to BEC T>Tc T<Tc -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 Thermal population in Zeeman excited states a bi-modal spin distribution BEC only in mS=-3 (lowest energy state) Cloud spontaneously polarizes ! Non-interacting multicomponent Bose thermodynamics: a BEC is ferromagnetic Phys. Rev. Lett. 108, 045307 (2012) 12

Below a critical magnetic field: the BEC ceases to be ferromagnetic ! B=100 µG B=900 µG Magnetization remains small even when the condensate fraction approaches 1 !! Observation of a depolarized condensate !! Necessarily an interaction effect Phys. Rev. Lett. 108, 045307 (2012) 13

Cr spinor properties at low field -1 3 3 2 2 1 1 -2 -1 -1 -2 -2 -3 -3 -3 Large magnetic field : ferromagnetic Low magnetic field : polar/cyclic Santos PRL 96, 190404 (2006) Ho PRL. 96, 190405 (2006) -2 -3 Phys. Rev. Lett. 106, 255303 (2011) 14

Density dependent threshold BEC Lattice Critical field 0.26 mG 1.25 mG 1/e fitted 0.3 mG 1.45 mG Phys. Rev. Lett. 106, 255303 (2011) Load into deep 2D optical lattices to boost density. Field for depolarization depends on density Note: Possible new physics in 1D: Polar phase is a singlet-paired phase Shlyapnikov-Tsvelik NJP, 13, 065012 (2011) 15

Dynamics analysis Meanfield picture : Spin(or) precession Produce BEC m=-3 Rapidly lower magnetic field PRL 106, 255303 (2011) Meanfield picture : Spin(or) precession Ueda, PRL 96, 080405 (2006) Natural timescale for depolarization: 16

Phases set by contact interactions, dipole-dipole interactions Open questions about equilibrium state Phases set by contact interactions, magnetization dynamics set by dipole-dipole interactions Santos and Pfau PRL 96, 190404 (2006) Diener and Ho PRL. 96, 190405 (2006) Magnetic field Demler et al., PRL 97, 180412 (2006) - Operate near B=0. Investigate absolute many-body ground-state We do not (cannot ?) reach those new ground state phases Quench should induce vortices… Role of thermal excitations ? Polar Cyclic !! Depolarized BEC likely in metastable state !! 17

1 Spinor physics of a Bose gas with free magnetization Thermodynamics: Spontaneous magnetization of the gas due to ferromagnetic nature of BEC Spontaneous depolarization of the BEC due to spin-dependent interactions 2 Magnetism in 3D opical lattices Depolarized ground state at low magnetic field Spin and magnetization dynamics

-2 -3 Spontaneous demagnetization of atoms in a 3D lattice 3D lattice Critical field 4kHz Threshold seen 5kHz -3 -2

Control the ground state by a light-induced effective Quadratic Zeeman effect -1 1 -2 -3 -3 -2 -1 0 1 2 3 Energy A s- polarized laser Close to a JJ transition (100 mW 427.8 nm) D=a mS2 In practice, a p component couples mS states Typical groundstate at 60 kHz Quadratic effect allows state preparation

3D lattice (1 atom per site) Adiabatic (reversible) change in magnetic state (unrelated to dipolar interactions) quadratic effect t -2 -3 3D lattice (1 atom per site) Note: the spin state reached without a 3D lattice is completely different ! Large spin-dependent (contact) interactions in the BEC have a very large effect on the final state -1 -2 1 -1 -2 -3 -3 BEC (no lattice)

Sign for intersite dipolar relaxation ? Magnetization dynamics in lattice (with 1 atom per site) Load optical lattice quadratic effect vary time Repolarization remains even with very few atoms Sign for intersite dipolar relaxation ?

Magnetization dynamics resonance for two atoms per site -3 -2 -1 1 2 3 Dipolar resonance when released energy matches band excitation Towards coherent excitation of pairs into higher lattice orbitals ? (Rabi oscillations) Mott state locally coupled to excited band Resonance sensitive to atom number

Strong anisotropy of dipolar resonances Anisotropic lattice sites At resonance May produce vortices in each lattice site (EdH effect) (problem of tunneling) See also PRL 106, 015301 (2011)

Conclusions Magnetization changing dipolar collisions introduce the spinor physics with free magnetization New spinor phases at extremely low magnetic fields Tensor light-shift allow to reach new quantum phases 0D Control of dipolar relaxation in optical lattices magnetization dynamics in optical lattices can be made resonant could be made coherent ? towards Einstein-de-Haas (rotation in lattice sites)

de Paz, A. Chotia, B. Pasquiou (PhD), G. Bismut (PhD), B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, M. Efremov, O. Gorceix 26 26 26 26