9.3 Two-Way Tables Venn Diagrams and Probability for Two Events

Slides:



Advertisements
Similar presentations
Chapter 5: Probability: What are the Chances?
Advertisements

Section 5.2 Probability Rules
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules.
5.2B TWO-WAY TABLES, GENERAL ADDITION RULE AND VENN DIAGRAMS
Venn Diagrams and Probability Target Goals: I can use a Venn diagram to model a chance process of two events. I can use the general addition rule. 5.2b.
Section 5.2 The Addition Rule and Complements
CHAPTER 5 Probability: What Are the Chances?
 The Practice of Statistics, 4 th edition – For AP*  STARNES, YATES, MOORE Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 6: Probability: What are the Chances? Section 6.3 Conditional Probability.
11/20/ Probability Rules.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 5 Probability: What Are the Chances? 5.2.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 5 Probability: What Are the Chances? 5.2.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules.
Probability Rules. We start with four basic rules of probability. They are simple, but you must know them. Rule 1: All probabilities are numbers between.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules.
Determine a method to simulate each of the following events:  If 15% of all AP statistics students get a “5” on the AP exam, how many would we need to.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 5 Probability: What Are the Chances? 5.2.
4-3 Addition Rule This section presents the addition rule as a device for finding probabilities that can be expressed as P(A or B), the probability that.
+ Unit 5: Probability: What are the Chances? Lesson 2 Probability Rules.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 5 Probability: What Are the Chances? 5.2.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 5 Probability: What Are the Chances? 5.2.
+ Chapter 5 Probability: What Are the Chances? 5.1Randomness, Probability, and Simulation 5.2Probability Rules 5.3Conditional Probability and Independence.
+ Section 5.2 Probability Rules After this section, you should be able to… DESCRIBE chance behavior with a probability model DEFINE and APPLY basic rules.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 5 Probability: What Are the Chances? 5.2.
The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers CHAPTER 5 Probability: What Are the Chances? 5.2.
+ The Practice of Statistics, 4 th edition – For AP* STARNES, YATES, MOORE Chapter 5: Probability: What are the Chances? Section 5.2 Probability Rules.
Lecture Slides Elementary Statistics Twelfth Edition
CHAPTER 5 Probability: What Are the Chances?
CHAPTER 5 Probability: What Are the Chances?
Probability Using Venn Diagrams
CHAPTER 5 Probability: What Are the Chances?
Chapter 5: Probability: What are the Chances?
CHAPTER 5 Probability: What Are the Chances?
CHAPTER 5 Probability: What Are the Chances?
Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman
Probability Rules!!! … and yea… Rules About Probability
Chapter 5: Probability: What are the Chances?
CHAPTER 5 Probability: What Are the Chances?
Chapter 5: Probability: What are the Chances?
Warmup The chance of winning a prize from Herff- Jones is 1/22. How would you set up a simulation using the random number table to determine the probability.
Chapter 5: Probability: What are the Chances?
CHAPTER 5 Probability: What Are the Chances?
Pull 2 samples of 3 pennies and record both averages (2 dots).
Chapter 5: Probability: What are the Chances?
Chapter 6: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
CHAPTER 5 Probability: What Are the Chances?
Chapter 5: Probability: What are the Chances?
Mrs.Volynskaya Alg.2 Ch.1.6 PROBABILITY
CHAPTER 5 Probability: What Are the Chances?
Chapter 5: Probability: What are the Chances?
CHAPTER 5 Probability: What Are the Chances?
CHAPTER 5 Probability: What Are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
CHAPTER 5 Probability: What Are the Chances?
Chapter 6: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Chapter 5: Probability: What are the Chances?
Unit 6: Probability: What are the Chances?
An Introduction to….
Presentation transcript:

9.3 Two-Way Tables Venn Diagrams and Probability for Two Events

Define events A: is male B : has pierced ears. Find has pierced ears. is a male with pierced ears. is a male or has pierced ears. Define events A: is male B : has pierced ears. (c) We want to find P(male or pierced ears), that is, P(A or B). There are 90 males in the class and 103 individuals with pierced ears. However, 19 males have pierced ears – don’t count them twice! P(A or B) = (19 + 71 + 84)/178. So, P(A or B) = 174/178 (a) Each student is equally likely to be chosen. 103 students have pierced ears. So, P(pierced ears) = P(B) = 103/178. (b) We want to find P(male and pierced ears), that is, P(A and B). Look at the intersection of the “Male” row and “Yes” column. There are 19 males with pierced ears. So, P(A and B) = 19/178.

Two-Way Tables and Probability Note, the previous example illustrates the fact that we can’t use the addition rule for mutually exclusive events unless the events have no outcomes in common.

If A and B are any two events resulting from some chance process, then P(A or B) = P(A) + P(B) – P(A and B) P(A ∩ B) = P(A) + P(B) – P(A ∪ B) General Addition Rule for Two Events Hint: To keep the symbols straight, remember ∪ for union and ∩ for intersection.

The complement AC contains exactly the outcomes that are not in A. The events A and B are mutually exclusive (disjoint) because they do not overlap. That is, they have no outcomes in common.

The intersection of events A and B (A ∩ B) is the set of all outcomes in both events A and B. The union of events A and B (A ∪ B) is the set of all outcomes in either event A or B.

Define events A: is male and B: has pierced ears.

40% of people read USA today. 25% read the New York Times 40% of people read USA today. 25% read the New York Times. Five percent read both papers. Make a two-way table: Construct a Venn Diagram: Find the probability that the person reads at least one of the two papers. Find the probability that the person doesn’t read either paper.