Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI luglio 2017

Slides:



Advertisements
Similar presentations
 s(E) = S(E) e–2ph E-1 s Laboratory for Underground
Advertisements

Carlo Broggini, INFN-Padova Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 2 cm m m m m Astrophysical Factor Gamow Factor Reaction Rate(star)
Nuclear Burning in Stars (E star ) ( E ) = S(E) e –2 E -1 Reaction Rate(star) (E) (E) dE Gamow Peak Maxwell Boltzmann Extrap.Meas. LUNA results Men in.
LUNALUNA Nucleosintesi stellare (E star ) (E) = S(E)/E e –2 2 cm m m m m Fattore astrofisico Interazioni(stella) (E) (E) dE Picco di Gamow Maxwell Boltzmann.
NuPECC - Milan Present and future of Laboratory Underground Nuclear Astrophysics Alba Formicola - Status of the D(, ) 6 Li measurement -Status of.
Underground Measurement of the 17O+p Reactions
Alpha Stucture of 12 B Studied by Elastic Scattering of 8 Li Excyt Beam on 4 He Thick Target M.G. Pellegriti Laboratori Nazionali del Sud – INFN Dipartimento.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Direct measurement of the d( α, γ ) 6 Li cross-section.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
The LUNA experiment: direct measurement of thermonuclear cross sections of astrophysical interest Alessandra Guglielmetti Universita’ degli Studi di Milano.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Gianluca Imbriani Physics Department of University of Naples Federico II, Italian National Institute of Nuclear Physics (INFN) and Joint Institute of Nuclear.
Searching for the Low-Energy Resonances in the 12 C( 12 C,n) 23 Mg Reaction Cross Section Relevant for S-Process Nucleosynthesis Brian Bucher University.
I NSTITUTE FOR S TRUCTURE AND N UCLEAR A STROPHYSICS N UCLEAR S CIENCE L ABORATORY CASPAR An underground Accelerator Laboratory for Nuclear Astrophysics.
Zagreb IP: Experimental nuclear physics inputs for thermonuclear runaway - NuPITheR Neven Soić, Ru đ er Bošković Institute, Zagreb, Croatia EuroGENESIS.
Lesson 13 Nuclear Astrophysics. Elemental and Isotopic Abundances.
What temperature would provide a mean kinetic energy of 0.5 MeV? By comparison, the temperature of the surface of the sun  6000 K.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
ALNA- Accelerator Laboratory for Nuclear Astrophysics Underground Heide Costantini University of Notre Dame, IN, USA INFN, Genova, Italy.
Physics Colloquium Ⅱ Shibata Laboratory OKA, Hiroki Nucleosyntheses studied with a Van de Graaff Accelerator [Contents] 1. Objective.
 ( E ) = S(E) e –2   E -1 2      m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
 ( E ) = S(E) e –2   E -1 2       m  m   m   m   Reaction Rate(star)    (E)  (E) dE Gamow Peak  Maxwell Boltzmann.
Measurement of 7 Be(n,  ) and 7 Be(n,p) cross sections for the Cosmological Li problem in Addendum to CERN-INTC /INTC-P-417 Spokepersons:
Institute for Structure and Nuclear Astrophysics Nuclear Science Laboratory E381: Search of potential resonances in the 12 C+ 12 C fusion reaction using.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron cross sections for reading the abundance history Michael Heil Forschungszentrum Karlsruhe.
High Resolution Spectroscopy in Nuclear Astrophysics Joachim Görres University of Notre Dame & JINA.
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
Indirect measurements of the -3 keV resonance in the 13 C(α, n) 16 O reaction: the THM approach Marco La Cognata.
1/38 Laboratory Underground Nuclear Astrophysics The D( 4 He,  ) 6 Li reaction at LUNA and the Big Bang Nucleosynthesis Carlo Gustavino For the LUNA collaboration.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture measurements for the weak s-process Michael Heil Hirschegg workshop, January.
L’esperimento LUNA- CdS MI luglio 2012 Alessandra Guglielmetti Università degli Studi di Milano e INFN, Milano, ITALY Laboratory Underground Nuclear Astrophysics.
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
NUCLEAR REACTIONS OF ASTROPHYSICAL INTEREST AT LUNA D. Trezzi (for the LUNA collaboration) Università degli Studi di Milano | INFN – New Vistas in Low-Energy.
The LUNA experiment at Gran Sasso Laboratory: studying stars by going underground Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano,
Nuclear Physics in Astrophysics V, Eilat 3-8 April 2011 Hydrogen-burning reactions at astrophysically relevant energies Laboratory Underground Nuclear.
22Ne(a,n)25Mg status and perspectives (for an underground experiment)
David Mountford University of Edinburgh
 s s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
L’esperimento LUNA- CdS MI giugno 2013
Stars, Accelerators and Underground Laboratories
Why going underground g-background
Zs. Fülöp ATOMKI, Debrecen, Hungary
The scientific program for the first five years of LUNA-MV
Resonances in the 12C(α,γ)16O reaction
the s process: messages from stellar He burning
Stato dell'esperimento LUNA
Laboratory for Underground Nuclear Astrophysics
status and perspectives
Alessandra Guglielmetti Universita’ degli Studi di Milano and
Underground Astrophysics at Surface Facilities: the Atomki case
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
The neutron capture cross section of the s-process branch point 63Ni
Neutron production and monitoring at the new LUNA-MV facility
Direct measurement of 4He(12C,16O)g reaction at KUTL*
The D(4He,)6Li reaction at LUNA and the Big Bang Nucleosynthesis
Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI giugno 2015
 s 2ph = Z1Z2 m/E m = m1m2 / (m1+m2), E in keV
Carbon, From Red Giants to White Dwarfs
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
Introduction to Bubble Chamber: Ops Training
BBN, neutrinos and Nuclear Astrophysics
(g,z) Breakup Experiments Charged Particles in the Final State
Study of the resonance states in 27P by using
Study of the resonance states in 27P by using
 s(E) = S(E) e–2ph E-1 s Nuclear Burning in Stars s(Estar) s
Elastic alpha scattering experiments
Chapter 3, Part2 Nuclear Chemistry CHEM 396 by Dr
Presentation transcript:

Stato dell’esperimento LUNA e del progetto LUNA MV- CdS MI luglio 2017 Alessandra Guglielmetti Università degli Studi di Milano and INFN, Milano, ITALY L’esperimento LUNA: la reazione 2H(p,g)3He come esempio di misura recente di interesse per la nucleosintesi primordiale Programma scientifico e stato del Progetto LUNA MV

2H(p,g)3He measurement From: the cosmological parameters the cross section of the processes responsible for 2H creation and destruction Primordial deuterium abundance can be calculated At BBN energies very few data on 2H(p,g)3He and 10% uncertainty BBN results can be compared with astronomical observations:    

2H(p,g)3He measurement BGO phase: total cross section (50-400 keV). D2 pressure 0.3 mbar HPGe phase: (150-400 keV) D2 pressure 0.3 mbar Also angular distribution measurement with extended gas target (Now on-line) Laurea magistrale G. Zorzi Milano

2H(p,g)3He measurement About 5% uncertainty

From Hydrogen burning to Helium and Carbon burning or… from LUNA to LUNA MV A new 3.5 MV accelerator will be installed soon in the north part of Hall B at Gran Sasso which is now being cleared

The LUNA MV accelerator In-line Cockcroft Walton accelerator In the energy range 0.3-3.5 MeV H+ beam: 500-1000 emA He+ beam: 300-500 emA C+ beam: 100-150 emA C++ beam: 100 emA Beam energy reproducibility : 10-4 * TV or 50 V The accelerator hall will be shielded by 80 cm thick concrete walls: no perturbation of the LNGS natural neutron flux

The scientific program of LUNA MV for the first 5 years (2019-2023) 14N(p,g)15O: the bottleneck reaction of the CNO cycle in connection with the solar abundance problem. Also commissioning measurement for the LUNA MV facility 12C+12C: energy production and nucleosynthesis in Carbon burning. Global chemical evolution of the Universe coordinated by A. Guglielmetti 13C(a,n)16O and 22Ne(a,n)25Mg : neutron sources for the s-process (nucleosynthesis beyond Fe) Later on… 12C(a,g)16O: key reaction of Helium burning: determines C/O ratio and stellar evolution …..

The 14N(p,g)15O reaction Three different measurements already performed at LUNA 400 kV in the energy range 70-370 keV (the third with a Clover detector above the 259 keV resonance) In 2016 measured by Li et al. over a wide energy range Still a complete and clear picture is not available: A low background measurement over a wide energy range is highly desirable to reduce the present uncertainty of 7.5% on the S factor The cross section of the 14N(p,g)15O reaction is one of the main contributor in the global uncertainty on the SSM model prediction for the solar composition n(CNO) depends on S1,14 and (C+N) abundance in the core: a measurement with 10% uncertainty would allow a determination of the (C+N) abundance at 15% Li et al., PRC (2016)

The 12C+12C reaction: astrophysical impact 12C+12C 20Ne + a Q = 4.62 MeV 12C+12C 23Na + p Q = 2.24 MeV 12C+12C 24Mg + g Q = 13.93 MeV negligible 12C+12C 23Mg + n Q = -2.62 MeV endothermic for low energies 12C+12C 16O + 2a Q = -0.12 MeV three particles reduced prob. 12C+12C 16O + 8Be Q= -0.21 MeV higher Coulomb barrier Coulomb barrier: EC= 6.7 MeV Its rate determines the value of “Mup”: If Mstar>Mup: quiescent Carbon burning core-collapse supernovae, neutron stars, stellar mass black holes If Mstar<Mup: no Carbon burning white dwarfs, nova, type Ia supernovae The reaction produces protons and alphas in a hot environment nucleosynthesis in massive stars

The 12C+12C reaction: measurement strategy Quiescent carbon burning: 0.9 MeV<ECM<3.4 MeV Type Ia supernovae: ECM ≥ 0.7 MeV 12C+12C 20Ne + ai + gi 12C+12C 23Na + pi + gi Eg = 440 keV Particle detection: Si or DE/E telescopes Gamma detection: HpGe Eg = 1634 keV At LUNA MV the g natural background can be reduced by 5 o.o.m.

The 12C+12C reaction at LUNA MV T. Spillane et al, PRL (2007) Several resonances spaced by 300-500 keV Typical width G≈ 10keV 1mm thick C target and well shielded HpGe detector: search for low energy resonances with 5 keV spacing and 30% statistical uncertainty: Beam induced background from 1H and 2H contamination in the target to be investigated E > 1955 for the proton channel (background limited) E > 1605 keV for the alpha channel (time limited) Total time needed 2.5 y

The neutron source reactions for the s-process: 13C(a,n)16O and 22Ne(a,n)25Mg Nucleosynthesis of half of the elements heavier than Fe Main s-process ~90<A<210 Weak s-process A<~90 TP-AGB stars massive stars > 10 MSun shell H-burning He-flash T9 ~ 0.1 K 0.25 ≤ T9 ~ 0.4 K 107-108 cm-3 1010-1011 cm-3 13C(a,n)16O 22Ne(a,n)25Mg core He-burning shell C-burning 3-3.5·108 K ~109 K 106 cm-3 1011-1012 cm-3 22Ne(a,n)25Mg 13C(a,n) 22Ne(a,n)

The 13C(a,n)16O reaction E = 140-230 keV (T = 90 · 106 K) [MeV] c.m. E 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 S [ M e V b ] 1 2 3 4 5 6 10 ´ Davids1968 Bair1973 Kellogg1989 Drotleff1993 Harrissopulos2005 Heil2008 fits/theory Hale1987 Kubono2003 large statistical uncertainties at low energies large scatter in absolute values (normalization problem) unknown systematic uncertainties uncertainties in detection efficiencies contribution from sub-threshold state (E=6.356 MeV in 17O) contribution from electron screening LUNA400 range No data at low energy because of high neutron background in surface laboratories. Extrapolations differ by a factor ~4 (10% accuracy would be required).

The 13C(a,n)16O reaction at LUNA 400 and LUNA MV Direct kinematics (4He beam on 13C target): 210 keV<Ecm<300 keV (275 keV<Ebeam<400 keV) at LUNA 400 kV 240 keV<Ecm<1060 keV (300 keV<Ebeam<1.4 MeV) at LUNA MV 13CH4 gas target (drawbacks: limit on the density, possible molecule cracking). With typical conditions: 2.5 1017 atoms/cm2 13C enriched solid target (drawbacks: degradation, possible carbon deposition). Typically 2 1017-1018 atoms/cm2 Beam induced background: (a,n) reaction on impurities (10B, 11B, 17O, 18O) in the target and beam line En = 2-3.5 MeV 3He counters embedded in a polyethylene matrix Inverse kinematics (13C beam on 4He target): only possible at LUNA MV 4He gas target 2.5 1017 atoms/cm2 Beam induced background: 13C induced reaction on 2H, 6Li, 7Li, 10B, 11B, 16O, 19F En = 2-5.5 MeV: same detector as above

The 22Ne(a,n)25Mg reaction Q=-478 keV Level scheme of 26Mg is very complex The lowest well studied resonance at Ea=832 keV dominates the rate The influence of a possible resonance at 635 keV has been ruled out because of parity conservation Only upper limits (~10 pb) at: 570<Ea<800 keV (energy region of interest for AGB stars) Extrapolations may be affected by unknown resonances At T9 < 0.18 the competing reaction 22Ne(a,g)26Mg (Q=10.6 MeV) should become dominant (now measured at LUNA 400 kV) At LUNA MV: 22Ne windowless gas target + 3He counters inside moderator To fully exploit LNGS low background: shielded detector, selected tubes, pulse shape discrimination, remove 11B (because of 11B(a,n)14N) to reach the level of ~10 n/day.

LUNA-MV : most probable schedule Action Date Approval of the first HVEE technical design October 2016 Opening of the tendering procedure for LUNA-MV plants November 2016 Submission of the Authorization request to «Prefettura dell’Aquila» December 2016 Beginning of the clearing works in Hall B February 2017 End of the tendering procedure for the new LUNA-MV building June 2017 Beginning of the construction works in Hall B DECEMBER 2017 End of the tendering procedure for LUNA-MV plants October 2017 Beginning of the construction of the plants in the LUNA-MV building MARCH 2018 In-house acceptance test for the new LUNA-MV accelerator February 2018 Completion of the new LUNA-MV building and plants SEPTEMBER 2018 LUNA-MV accelerator delivering at LNGS DECEMBER 2018 Conclusion of the commissioning phase MAY 2019 Beginning First Experiment JUNE 2019

The LUNA collaboration G.F. Ciani*, L. Csedreki, A. Formicola, I. Kochanek, M. Junker| INFN LNGS /*GSSI, Italy D. Bemmerer, K. Stoeckel, M. Takacs, | HZDR Dresden, Germany C. Broggini, A. Caciolli, R. Depalo, P. Marigo, R. Menegazzo, D. Piatti | Università di Padova and INFN Padova, Italy C. Gustavino | INFN Roma1, Italy Z. Elekes, Zs. Fülöp, Gy. Gyurky,T. Szucs | MTA-ATOMKI Debrecen, Hungary M. Lugaro | Konkoly Observatory, Hungarian Academy of Sciences, Budapest, Hungary O. Straniero | INAF Osservatorio Astronomico di Collurania, Teramo, Italy F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli | Università di Genova and INFN Genova, Italy A. Guglielmetti| Università di Milano and INFN Milano, Italy A. Best, A. Di Leva, G. Imbriani, | Università di Napoli and INFN Napoli, Italy G. Gervino | Università di Torino and INFN Torino, Italy M. Aliotta, C. Bruno, T. Davinson | University of Edinburgh, United Kingdom G. D’Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino*, L. Schiavulli, A. Valentini| Università di Bari and INFN Bari/*Lecce, Italy