NuGoa – Aspects of Neutrinos Goa, India April 10, Walter Winter

Slides:



Advertisements
Similar presentations
High  Li/B  -Beam Enrique Fernández-Martínez, MPI für Physik Munich Based on a collaboration with: P. Coloma, A. Donini and J. López-Pavón.
Advertisements

Precision Neutrino Oscillation Measurements & the Neutrino Factory Scoping Study for a Future Accelerator Neutrino Complex – Discussion Meeting Steve Geer,
TeV scale see-saws from higher than d=5 effective operators Neutrino masses and Lepton flavor violation at the LHC Würzburg, Germany November 25, 2009.
Near detectors and systematics IDS-NF plenary meeting at TIFR, Mumbai October 13, 2009 Walter Winter Universität Würzburg TexPoint fonts used in EMF: AAAAA.
Oscillation Neutrino Physics Reach at Neutrino Factories M. Lindner Technical University Munich.
CP violation searches with Neutrino Factories and Beta Beams Neutrinos in Particle, in Nuclear and in Astrophysics Trento, Italy November 20, 2008 Walter.
Phenomenology of  13  13 half-day meeting Oxford, UK September 24, 2007 Walter Winter Universität Würzburg.
How Will We See Leptonic CP Violation? D. Casper University of California, Irvine.
Beyond T2K and NOvA (… and reactor experiments) NuFact 06 UC Irvine, USA August 24, 2006 Walter Winter Universität Würzburg, Germany.
CP violation and mass hierarchy searches Neutrinos in particle physics and astrophysics (lecture) June 2009 Walter Winter Universität Würzburg TexPoint.
Phenomenology of future LBL experiments … and the context with Euro WP6 IDS-NF + Euro plenary meeting at CERN March 25, 2009 Walter Winter Universität.
Neutrino phenomenology Lecture 2: Precision physics with neutrinos Winter school Schladming 2010 “Masses and constants” Walter Winter Universität.
Neutrino oscillation physics with superbeams and neutrino factories Nu HoRIzons workshop HRI, India February 13-15, 2008 Walter Winter Universität Würzburg.
Toyota National College of Technology A.Takamura Collaboration with K.Kimura and T.Yoshikawa GLoBES 2007 Measuring the Leptonic CP Phase in Oscillations.
Neutrino oscillations: Perspective of long-baseline experiments 522. Wilhelm and Else Heraeus-Seminar: Exploring the neutrino sky and fundamental particle.
Summary of WG1 – Phenomenological issues Osamu Yasuda (TMU)
Resolving neutrino parameter degeneracy 3rd International Workshop on a Far Detector in Korea for the J-PARC Neutrino Beam Sep. 30 and Oct , Univ.
Physics with a very long neutrino factory baseline IDS Meeting CERN March 30, 2007 Walter Winter Universität Würzburg.
New physics searches with near detectors at the Neutrino Factory MINSIS workshop UAM Madrid December 10-11, 2009 Walter Winter Universität Würzburg TexPoint.
Dec. 13, 2001Yoshihisa OBAYASHI, Neutrino and Anti-Neutrino Cross Sections and CP Phase Measurement Yoshihisa OBAYASHI (KEK-IPNS) NuInt01,
CP violation and mass hierarchy searches with Neutrino Factories and Beta Beams NuGoa – Aspects of Neutrinos Goa, India April 10, 2009 Walter Winter Universität.
Beta beam scenarios … for neutrino oscillation physics Beta beam meeting Aachen, Germany October 31-November 1, 2007 Walter Winter Universität Würzburg.
Geographical issues and physics applications of “very long” neutrino factory baselines NuFact 05 June 23, 2005 Walter Winter Institute for Advanced Study,
Neutrino Factory and Beta Beam Experiment NO-VE 2006 Venice, Italy February 8, 2006 Walter Winter Institute for Advanced Study, Princeton.
Impact of large  13 on long- baseline measurements at PINGU PINGU Workshop Erlangen university May 5, 2012 Walter Winter Universität Würzburg TexPoint.
CP violation in the neutrino sector Lecture 3: Matter effects in neutrino oscillations, extrinsic CP violation Walter Winter Nikhef, Amsterdam,
If  13 is large, then what ? Hisakazu Minakata Tokyo Metropolitan University.
Neutrino Factories Andrea Donini Instituto de Física Teórica/Instituto de Física Corpuscular CSIC European Strategy for Neutrino Oscillation Physics -
Neutrino factory physics reach … and impact of detector performance 2 nd ISS Meeting KEK, Tsukuba, Japan January 24, 2006 Walter Winter Institute for Advanced.
Optimization of a neutrino factory oscillation experiment 3 rd ISS Meeting Rutherford Appleton Laboratory, UK April 25-27, 2006 Walter Winter Institute.
Physics and Performance Evaluation Group NuFact 07 Okayama University, Japan August 6, 2007 Walter Winter Universität Würzburg for the executive committee:
Future precision neutrino experiments and their theoretical implications Matter to the deepest Ustron, Poland September 6, 2007 Walter Winter Universität.
Neutrino mass and DM direct detection Daijiro Suematsu (Kanazawa Univ.) Erice Sept., 2013 Based on the collaboration with S.Kashiwase PRD86 (2012)
Super Beams, Beta Beams and Neutrino Factories (a dangerous trip to Terra Incognita) J.J. Gómez-Cadenas IFIC/U. Valencia Original results presented in.
Contents of IDR: PPEG IDS-NF plenary meeting RAL, UK September 22-25, 2010 Walter Winter Universität Würzburg TexPoint fonts used in EMF: AAAAA A A A.
Measuring Earth Matter Density and Testing MSW Hisakazu Minakata Tokyo Metropolitan University.
Long baseline neutrino oscillations: Theoretical aspects NOW 2008 Conca Specchiulla, Italy September 9, 2008 Walter Winter Universität Würzburg TexPoint.
Future precision neutrino experiments and their theoretical Madrid, Spain November 22, 2007 Walter Winter Universität Würzburg.
NSI versus NU at the Neutrino Factory Euronu meeting Strasbourg June 2-4, 2010 Walter Winter Universität Würzburg TexPoint fonts used in EMF: AAAAA A A.
Optimizing the green-field beta beam NuFact 08 Valencia, Spain June 30-July 5, 2008 Walter Winter Universität Würzburg.
Optimization of a neutrino factory for non-standard neutrino interactions IDS plenary meeting RAL, United Kingdom January 16-17, 2008 Walter Winter Universität.
The quest for  13 : Parameter space and performance indicators Proton Driver General Meeting At Fermilab April 27, 2005 Walter Winter Institute for Advanced.
Thoughts on the optimization of the VLENF VLENF meeting at Fermilab, USA September 1, 2011 Walter Winter Universität Würzburg TexPoint fonts used in EMF:
Near detectors for new physics searches IDS-NF plenary meeting at TIFR, Mumbai October 12, 2009 Walter Winter Universität Würzburg TexPoint fonts used.
Testing neutrino properties at the Neutrino Factory Astroparticle seminar INFN Torino December 3, 2009 Walter Winter Universität Würzburg TexPoint fonts.
Optimization of a neutrino factory Discovery machine versus precision instrument NuFact 07 Okayama University, Japan August 6, 2007 Walter Winter Universität.
Sterile neutrinos at the Neutrino Factory IDS-NF plenary meeting October 19-21, 2011 Arlington, VA, USA Walter Winter Universität Würzburg TexPoint fonts.
Future neutrino oscillation experiments J.J. Gómez-Cadenas U. Valencia/KEK Original results presented in this talk based on work done in collaboration.
Systematic model building... based on QLC assumptions NuFact 07 Okayama University, Japan August 8, 2007 Walter Winter Universität Würzburg.
Optimization of a neutrino factory for large  13 Golden 07 IFIC, Valencia June 28, 2007 Walter Winter Universität Würzburg.
Systematics at the Neutrino Factory … and the global context NuInt 2012 Rio de Janeiro, Brazil Oct , 2012 Walter Winter Universität Würzburg TexPoint.
Near Detector Tasks EuroNu Meeting, CERN 26 March 2009 Paul Soler.
Double beta decay and Leptogenesis International workshop on double beta decay searches Oct SNU Sin Kyu Kang (Seoul National University of.
Marcos DRACOS IPHC-IN2P3/CNRS Université de Strasbourg
Institute for Advanced Study, Princeton
September 24, 2007 Walter Winter
CP violation and D Physics
IDS-NF + Euron plenary meeting at CERN March 25, Walter Winter
Physics and Performance Evaluation Group: Status and plans
Detector Baseline EuroNu Meeting, RAL 20 January 2010 Paul Soler.
cLFV in Seesaw Models (after LHC12, θ and MEG13)
cLFV in SUSY Seesaw Models (after LHC12, θ and MEG13)
Neutrino Oscillation Physics with a Neutrino Factory
Precision era.
High g Li/B b-Beam Enrique Fernández-Martínez, MPI für Physik Munich
Parameter Degeneracy in Neutrino Oscillations (and how to solve it?)
T2KK Sensitivity of Resolving q23 Octant Degeneracy
PMNS Matrix Elements Without Assuming Unitarity
Double beta decay and Leptogenesis
Probing non-standard neutrino physics at T2KK and neutrino factory
Presentation transcript:

CP violation and mass hierarchy searches with Neutrino Factories and Beta Beams NuGoa – Aspects of Neutrinos Goa, India April 10, 2009 Walter Winter Universität Würzburg TexPoint fonts used in EMF: AAAAAAAA

Contents Motivation from theory: CPV CPV Phenomenology The experiments Optimization for CPV CP precision measurement CPV from non-standard physics Mass hierarchy measurement Summary

Motivation from theory

Where does CPV enter? Example: Type I seesaw (heavy SM singlets Nc) Could also be type-II, III seesaw, radiative generation of neutrino mass, etc. Block-diag. Primary source of CPV (depends BSM theory) Charged lepton mass terms Eff. neutrino mass terms Effective source of CPV (only sectorial origin relevant) Observable CPV (completely model-indep.) CC

Connection to measurement From the measurement point of view: It makes sense to discuss only observable CPV (because anything else is model-dependent!) At high E (type I-seesaw): 9 (MR)+18 (MD)+18 (Ml) = 45 parameters At low E: 6 (masses) + 3 (mixing angles) + 3 (phases) = 12 parameters LBL accessible CPV: d If  UPMNS real  CP conserved CPV in 0nbb decay Extremely difficult! (Pascoli, Petcov, Rodejohann, hep-ph/0209059) There is no specific connection between low- and high-E CPV! But: that‘s not true for special (restrictive) assumptions!

~ MD (in basis where Ml and MR diagonal) Why is CPV interesting? Leptogenesis: CPV from Nc decays If special assumptions (such as hier. MR, NH light neutrinos, …) it is possible that dCP is the only source of CPV for leptogensis! (Nc)i (Nc)i ~ MD (in basis where Ml and MR diagonal) Different curves: different assumptions for q13, … (Pascoli, Petcov, Riotto, hep-ph/0611338 )

How well do we need to measure? We need generic arguments Example: Parameter space scan for eff. 3x3 case (QLC-type assumptions, arbitrary phases, arbitrary Ml) The QLC-type assumptions lead to deviations O(qC) ~ 13 Can also be seen in sum rules for certain assumptions, such as (F: model parameter) This talk: Want Cabibbo-angle order precision for dCP! (arXiv:0709.2163) (Niehage, Winter, arXiv:0804.1546)

CPV phenomenology

Terminology Any value of dCP (except for 0 and p) violates CP Sensitivity to CPV: Exclude CP-conserving solutions 0 and p for any choice of the other oscillation parameters in their allowed ranges

Measurement of CPV Antineutrinos: Magic baseline: Silver: Platinum, Superb.: (Cervera et al. 2000; Freund, Huber, Lindner, 2000; Huber, Winter, 2003; Akhmedov et al, 2004)

Iso-probability curves Degeneracies Iso-probability curves CP asymmetry (vacuum) suggests the use of neutrinos and antineutrinos One discrete deg. remains in (q13,d)-plane (Burguet-Castell et al, 2001) Additional degeneracies: (Barger, Marfatia, Whisnant, 2001) Sign-degeneracy (Minakata, Nunokawa, 2001) Octant degeneracy (Fogli, Lisi, 1996) Neutrinos Antineutrinos Best-fit

Intrinsic vs. extrinsic CPV The dilemma: Strong matter effects (high E, long L), but Earth matter violates CP Intrinsic CPV (dCP) has to be disentangled from extrinsic CPV (from matter effects) Example: p-transit Fake sign-solution crosses CP conserving solution Typical ways out: T-inverted channel? (e.g. beta beam+superbeam, platinum channel at NF, NF+SB) Second (magic) baseline Critical range True dCP (violates CP maximally) NuFact, L=3000 km Degeneracy above 2s (excluded) Fit True (Huber, Lindner, Winter, hep-ph/0204352)

The magic baseline

CPV discovery reach … in (true) sin22q13 and dCP Best performance close to max. CPV (dCP = p/2 or 3p/2) Sensitive region as a function of true q13 and dCP dCP values now stacked for each q13 No CPV discovery if dCP too close to 0 or p No CPV discovery for all values of dCP 3s ~ Cabibbo-angle precision at 2s BENCHMARK! Read: If sin22q13=10-3, we expect a discovery for 80% of all values of dCP

The experiments

Beta beam concept … originally proposed for CERN (CERN layout; Bouchez, Lindroos, Mezzetto, 2003; Lindroos, 2003; Mezzetto, 2003; Autin et al, 2003) (Zucchelli, 2002) Key figures (any beta beam): g, useful ion decays/year? Often used “standard values”: 3 1018 6He decays/year 1 1018 18Ne decays/year Typical g ~ 100 – 150 (for CERN SPS) g More recent modifications: Higher g (Burguet-Castell et al, hep-ph/0312068) Different isotope pairs leading to higher neutrino energies (same g) (http://ie.lbl.gov/toi) (C. Rubbia, et al, 2006)

Current status: A variety of ideas “Classical” beta beams: “Medium” gamma options (150 < g < ~350) Alternative to superbeam! Possible at SPS (+ upgrades) Usually: Water Cherenkov detector (for Ne/He) (Burguet-Castell et al, 2003+2005; Huber et al, 2005; Donini, Fernandez-Martinez, 2006; Coloma et al, 2007; Winter, 2008) “High” gamma options (g >> 350) Require large accelerator (Tevatron or LHC-size) Water Cherenkov detector or TASD or MID? (dep. on g, isotopes) (Burguet-Castell et al, 2003; Huber et al, 2005; Agarwalla et al, 2005, 2006, 2007, 2008, 2008; Donini et al, 2006; Meloni et al, 2008) Hybrids: Beta beam + superbeam (CERN-Frejus; Fermilab: see Jansson et al, 2007) “Isotope cocktail” beta beams (alternating ions) (Donini, Fernandez-Martinez, 2006) Classical beta beam + Electron capture beam (Bernabeu et al, 2009) … The CPV performance depends very much on the choice from this list! Often: baseline Europe-India

Neutrino factory: International design study (Geer, 1997; de Rujula, Gavela, Hernandez, 1998; Cervera et al, 2000) Signal prop. sin22q13 Contamination Muons decay in straight sections of a storage ring IDS-NF: Initiative from ~ 2007-2012 to present a design report, schedule, cost estimate, risk assessment for a neutrino factory In Europe: Close connection to „Euronus“ proposal within the FP 07 In the US: „Muon collider task force“ ISS

IDS-NF baseline setup 1.0 Two decay rings Em=25 GeV 5x1020 useful muon decays per baseline (both polarities!) Two baselines: ~4000 + 7500 km Two MIND, 50kt each Currently: MECC at shorter baseline (https://www.ids-nf.org/)

NF physics potential Excellent q13, MH, CPV discovery reaches (IDS-NF, 2007) Robust optimum for ~ 4000 + 7500 km Optimization even robust under non-standard physics (dashed curves) (Kopp, Ota, Winter, arXiv:0804.2261; see also: Gandhi, Winter, 2007)

Optimization for CPV

Optimization for CPV Small q13: Optimize discovery reach in q13 direction Large q13: Optimize discovery reach in (true) dCP direction ~ Precision! What defines “small” vs “large q13”? A Double Chooz, Day Bay, T2K, … discovery? Optimization for large q13 Optimization for small q13

Large q13 strategy Assume e.g. that Double Chooz discovers q13 Minimum wish list easy to define: 5s independent confirmation of q13 > 0 3s mass hierarchy determination for any (true) dCP 3s CP violation determination for 80% (true) dCP (~ 2s sensitvity to a Cabibbo angle-size CP violation) For any (true) q13 in 90% CL D-Chooz allowed range! What is the minimal effort for that? NB: Such a minimum wish list is non-trivial for small q13 (arXiv:0804.4000; Sim. from hep-ph/0601266; 1.5 yr far det. + 1.5 yr both det.)

Example: Minimal beta beam (arXiv:0804.4000) Minimal effort = One baseline only Minimal g Minimal luminosity Any L (green-field!) Example: Optimize L-g for fixed Lumi: CPV constrains minimal g g as large as 350 may not even be necessary! (see hep-ph/0503021) CERN-SPS good enough? Sensitivity for entire Double Chooz allowed range! 5yr x 1.1 1018 Ne and 5yr x 2.9 1018 He useful decays

Small q13 strategy Example: Beta beams Assume that Double Chooz … do not find q13 Example: Beta beam in q13-direction (for max. CPV) „Minimal effort“ is a matter of cost! LSF ~ 2 50 kt MID L=400 km (LSF) (Huber et al, hep-ph/0506237) (Agarwalla et al, arXiv:0802.3621)

Experiment comparison The sensitivities are expected to lie somewhere between the limiting curves Example: IDS-NF baseline (~ dashed curve) (ISS physics WG report, arXiv:0810.4947, Fig. 105)

CP precision measurement

Why is that interesting? Theoretical example Large mixings from CL and n sectors? Example: q23l = q12n = p/4, perturbations from CL sector (can be connected with textures) (Niehage, Winter, arXiv:0804.1546; see also Masina, 2005; Antusch, King 2005 for similar sum rules) The value of dCP is interesting (even if there is no CPV) Phenomenological example Staging scenarios: Build one baseline first, and then decide depending on the outcome Is dCP in the „good“ (0 < dCP < p) or „evil“ (p < dCP < 2p) range? (signal for neutrinos ~ +sin dCP) q12l dominates q13l dominates q12 ~ p/4 + q13 cos dCP q12 ~ p/4 – q13 cos dCP  q13 > 0.1, dCP ~ p  q13 > 0.1, dCP ~ 0 q23 ~ p/4 – (q13)2/2 q23 ~ p/4 + (q13)2/2 dCP and octant discriminate these examples!

Performance indicator: CP coverage Problem: dCP is a phase (cyclic) Define CP coverage (CPC): Allowed range for dCP which fits a chosen true value Depends on true q13 and true dCP Range: 0 < CPC <= 360 Small CPC limit: Precision of dCP Large CPC limit: 360 - CPC is excluded range

CP pattern Performance as a function of dCP (true) Example: Staging. If 3000-4000 km baseline operates first, one can use this information to determine if a second baseline is needed Precision limit Exclusion limit (Huber, Lindner, Winter, hep-ph/0412199)

CPV from non-standard physics?

CPV from non-standard interactions Example: non-standard interactions (NSI) in matter from effective four-fermion interactions: Discovery potential for NSI-CPV in neutrino propagation at the NF Even if there is no CPV in standard oscillations, we may find CPV! But what are the requirements for a model to predict such large NSI? ~ current bound IDS-NF baseline 1.0 (arXiv:0808.3583) 3s

CPV discovery for large NSI If both q13 and |eetm| large, the change to discover any CPV will be even larger: For > 95% of arbitrary choices of the phases NB: NSI-CPV can also affect the production/ detection of neutrinos, e.g. in MUV (Gonzalez-Garcia et al, hep-ph/0105159; Fernandez-Martinez et al, hep-ph/0703098; Altarelli, Meloni, 0809.1041; Antusch et al, 0903.3986) IDS-NF baseline 1.0 (arXiv:0808.3583)

Models for large NSI? Effective operator picture: Describes additions to the SM in a gauge-inv. way! Example: NSI for TeV-scale new physics d=6: ~ (100 GeV/1 TeV)2 ~ 10-2 compared to the SM d=8: ~ (100 GeV/1 TeV)4 ~ 10-4 compared to the SM Current bounds, such as from CLFV: difficult to construct large (= observable) leptonic matter NSI with d=6 operators (except for ettm, maybe) (Bergmann, Grossman, Pierce, hep-ph/9909390; Antusch, Baumann, Fernandez-Martinez, arXiv:0807.1003; Gavela, Hernandez, Ota, Winter,arXiv:0809.3451) Need d=8 effective operators! Finding a model with large NSI is not trivial! n mass d=6, 8, 10, ...: NSI

Systematic analysis for d=8 Feynman diagrams Basis (Berezhiani, Rossi, 2001) Decompose all d=8 leptonic operators systematically The bounds on individual operators from non-unitarity, EWPD, lepton universality are very strong! (Antusch, Baumann, Fernandez-Martinez, arXiv:0807.1003) Need at least two mediator fields plus a number of cancellation conditions (Gavela, Hernandez, Ota, Winter, arXiv:0809.3451) Avoid CLFV at d=8: C1LEH=C3LEH Combine different basis elements C1LEH, C3LEH Cancel d=8 CLFV But these mediators cause d=6 effects  Additional cancellation condition (Buchmüller/Wyler – basis)

Mass hierarchy (MH)

Motivation 8 8 Normal Inverted Specific models typically come together with specific MH prediction (e.g. textures are very different) Good model discriminator (Albright, Chen, hep-h/0608137)

Matter effects Magic baseline: (Cervera et al. 2000; Freund, Huber, Lindner, 2000; Huber, Winter, 2003; Akhmedov et al, 2004) Magic baseline: Removes all degeneracy issues (and is long!) Resonance: 1-A  0 (NH: n, IH: anti-n) Damping: sign(A)=-1 (NH: anti-n, IH: n) Energy close to resonance energy helps (~ 8 GeV) To first approximation: Pem ~ L2 (e.g. at resonance) Baseline length helps (compensates 1/L2 flux drop)

Baseline dependence Comparison matter (solid) and vacuum (dashed) Event rates (A.U.) Comparison matter (solid) and vacuum (dashed) Matter effects (hierarchy dependent) increase with L Event rate (n, NH) hardly drops with L Go to long L! (Dm212  0) NH matter effect Vacuum, NH or IH NH matter effect (Freund, Lindner, Petcov, Romanino, 1999)

Mass hierarchy sensitivity For a given set of true q13 and dCP: Find the sgn-deg. solution Repeat that for all true true q13 and dCP (for this plot)

Small q13 optimization: NF Em-L (single baseline) L1-L2 (two baselines) (Kopp, Ota, Winter, 2008) (Huber, Lindner, Rolinec, Winter, 2006) Magic baseline good choice for MH Em ~ 15 GeV sufficient (peaks at 8 GeV)

Small q13 optimization: BB (Agarwalla, Choubey, Raychaudhuri, Winter, 2008) Only B-Li offers high enough energies for „moderately high“ g Magic baseline global optimum if g>=350 (B-Li) Recently two-baseline setups discussed (Coloma, Donini, Fernandez-Martinez, Lopez-Pavon, 2007; Agarwalla, Choubey, Raychaudhuri, 2008)

Optimization for large q13 (arXiv:0804.4000) Performance as defined before (incl. 3s MH) L > 500 km necessary Large enough luminosity needed High enough g necessary Ne-He: limited to g > 120 B-Li: in principle, smaller g possible High g = high E = stronger matter effects!

Physics case for CERN-India? (neutrino factory) MH measurement if q13 small (see before; also de Gouvea, Winter, 2006) Degeneracy resolution for 10-4 ≤ sin22q13 ≤ 10-2 (Huber, Winter, 2003) Risk minimization (e.g., q13 precision measurement) (Gandhi, Winter, 2007) Compementary measurement (e.g. in presence of NSI) (Ribeiro et al, 2007) MSW effect verification (even for q13=0) (Winter, 2005) Fancy stuff (e.g. matter density measurement) (Gandhi, Winter, 2007)

Summary The Dirac phase dCP is probably the only realistically observable CP phase in the lepton sector Maybe the only observable CPV evidence for leptogenesis This and f1, f2: the only completely model-inpendent parameterization of CPV What precision do we want for it? Cabibbo-angle precision?  Relates to fraction of „dCP“ ~ 80-85% For a BB or NF, the experiment optimization/choice depends on q13 large or small Other interesting aspects in connection with CPV: CP precision measurement, NSI-CPV MH for small q13 requires magic baseline