Fig. 12-1 Figure 12.1 How do a cell’s chromosomes change during cell division?
(a) Reproduction (b) Growth and development (c) Tissue renewal 100 µm Fig. 12-2 100 µm 200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal Figure 12.2 The functions of cell division
0.5 µm Chromosomes DNA molecules Chromo- some arm Chromosome Fig. 12-4 0.5 µm Chromosomes DNA molecules Chromo- some arm Chromosome duplication (including DNA synthesis) Centromere Sister chromatids Figure 12.4 Chromosome duplication and distribution during cell division Separation of sister chromatids Centromere Sister chromatids
S (DNA synthesis) G1 Cytokinesis G2 Mitosis Fig. 12-5 INTERPHASE S (DNA synthesis) G1 Cytokinesis G2 Mitosis Figure 12.5 The cell cycle MITOTIC (M) PHASE
Chromosome, consisting of two sister chromatids Fig. 12-6 G2 of Interphase Prophase Prometaphase Metaphase Anaphase Telophase and Cytokinesis Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Nonkinetochore microtubules Metaphase plate Cleavage furrow Nucleolus forming Figure 12.6 The mitotic division of an animal cell Daughter chromosomes Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore Kinetochore microtubule Spindle Centrosome at one spindle pole Nuclear envelope forming
Fig. 12-7 Aster Centrosome Sister chromatids Microtubules Chromosomes Metaphase plate Kineto- chores Centrosome 1 µm Figure 12.7 The mitotic spindle at metaphase Overlapping nonkinetochore microtubules Kinetochore microtubules 0.5 µm
Figure 12.9 Cytokinesis in animal and plant cells Vesicles forming cell plate Wall of parent cell 1 µm 100 µm Cleavage furrow Cell plate New cell wall Figure 12.9 Cytokinesis in animal and plant cells Contractile ring of microfilaments Daughter cells Daughter cells (a) Cleavage of an animal cell (SEM) (b) Cell plate formation in a plant cell (TEM)
10 µm Fig. 12-10 Nucleus Chromatin condensing Nucleolus Chromosomes Cell plate Figure 12.10 Mitosis in a plant cell 1 Prophase 2 Prometaphase 3 Metaphase 4 Anaphase 5 Telophase
Chromosomes 2 Prometaphase Fig. 12-10b Figure 12.10 Mitosis in a plant cell 2 Prometaphase
Fig. 12-10c Figure 12.10 Mitosis in a plant cell 3 Metaphase
Fig. 12-10d Figure 12.10 Mitosis in a plant cell 4 Anaphase
10 µm Cell plate 5 Telophase Fig. 12-10e Figure 12.10 Mitosis in a plant cell 5 Telophase
Cell wall Origin of replication Plasma membrane E. coli cell Bacterial Fig. 12-11-4 Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Origin Origin Figure 12.11 Bacterial cell division by binary fission
Fig. 12-12 Bacterial chromosome (a) Bacteria Chromosomes Microtubules Intact nuclear envelope (b) Dinoflagellates Kinetochore microtubule Intact nuclear envelope Figure 12.12 A hypothetical sequence for the evolution of mitosis (c) Diatoms and yeasts Kinetochore microtubule Fragments of nuclear envelope (d) Most eukaryotes
G1 checkpoint Control system S G1 G2 M M checkpoint G2 checkpoint Fig. 12-14 G1 checkpoint Control system S G1 G2 M Figure 12.14 Mechanical analogy for the cell cycle control system M checkpoint G2 checkpoint
G0 G1 G1 G1 checkpoint (b) Cell does not receive a go-ahead signal Fig. 12-15 G0 G1 checkpoint Figure 12.15 The G1 checkpoint G1 G1 Cell receives a go-ahead signal (b) Cell does not receive a go-ahead signal
M G1 S G2 M G1 S G2 M G1 Fig. 12-17 MPF activity Cyclin concentration Time (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle G1 S Cdk Figure 12.17 Molecular control of the cell cycle at the G2 checkpoint Cyclin accumulation M Degraded cyclin G2 G2 Cdk Cyclin is degraded checkpoint Cyclin MPF (b) Molecular mechanisms that help regulate the cell cycle
Scalpels Petri plate Without PDGF cells fail to divide With PDGF Fig. 12-18 Scalpels Petri plate Without PDGF cells fail to divide Figure 12.18 The effect of a growth factor on cell division With PDGF cells prolifer- ate Cultured fibroblasts 10 µm
Density-dependent inhibition Fig. 12-19 Anchorage dependence Density-dependent inhibition Density-dependent inhibition Figure 12.19 Density-dependent inhibition and anchorage dependence of cell division 25 µm 25 µm (a) Normal mammalian cells (b) Cancer cells
Lymph vessel Tumor Blood vessel Cancer cell Glandular tissue Fig. 12-20 Lymph vessel Tumor Blood vessel Cancer cell Glandular tissue Metastatic tumor 1 A tumor grows from a single cancer cell. 2 Cancer cells invade neigh- boring tissue. 3 Cancer cells spread to other parts of the body. 4 Cancer cells may survive and establish a new tumor in another part of the body. Figure 12.20 The growth and metastasis of a malignant breast tumor
G1 S Cytokinesis Mitosis G2 MITOTIC (M) PHASE Prophase Telophase and Fig. 12-UN1 INTERPHASE G1 S Cytokinesis Mitosis G2 MITOTIC (M) PHASE Prophase Telophase and Cytokinesis Prometaphase Anaphase Metaphase
Fig. 12-UN2
Fig. 12-UN3
Fig. 12-UN4
Fig. 12-UN5
Fig. 12-UN6
You should now be able to: Describe the structural organization of the prokaryotic genome and the eukaryotic genome List the phases of the cell cycle; describe the sequence of events during each phase List the phases of mitosis and describe the events characteristic of each phase Draw or describe the mitotic spindle, including centrosomes, kinetochore microtubules, nonkinetochore microtubules, and asters Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Compare cytokinesis in animals and plants Describe the process of binary fission in bacteria and explain how eukaryotic mitosis may have evolved from binary fission Explain how the abnormal cell division of cancerous cells escapes normal cell cycle controls Distinguish between benign, malignant, and metastatic tumors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings