A TARGET OF THE ROSETTA MISSION

Slides:



Advertisements
Similar presentations
A. Cellino & S. Bagnulo - Helsinki, 19-21/08/2013 INAF --Osservatorio Astrofisico di Torino Spectro-Polarimetry as a potentially powerful tool for asteroid.
Advertisements

M.A.D.A.N.A.C Ph. Bendjoya L.U.A.N-U.N.S/C.N.R.S A. Cellino Osservatorio di Torino I.N.A.F M.A.D.A.N.A.C Measurement And Discovery of Asteroids and NEOs.
Time & Frequency Products R. Peřestý, J. Kraus, SWRM 4 th Data Quality Workshop 2-5 December 2014 GFZ Potsdam Recent results on ACC Data Processing 1 SWARM.
Asteroid’s Thermal Models AS3141 Benda Kecil dalam Tata Surya Prodi Astronomi 2007/2008 Budi Dermawan.
Two-parameter Magnitude System for Small Bodies Kuliah AS8140 & AS3141 (Fisika) Benda Kecil [dalam] Tata Surya Prodi Astronomi 2006/2007.
Romain G. Petrov Laboratoire LAGRANGE (OCA-UNS-CNRS) Avec S. Lagarde, F. Millour, M. Vannier, S. Rakshit (LAGRANGE), T. Elhalkouj (UCA Marrakech),
Extragalactic science with the Herschel Space Observatory Marc Sauvage CEA/DSM/DAPNIA Service d'Astrophysique UMR AIM.
Minor bodies observation from Earth and space: asteroid (2867)Steins A. Coradini, M.T. Capria, F. Capaccioni, and the VIRTIS International Team.
Measuring the Temperature of Hot Solar Flare Plasma with RHESSI Amir Caspi 1,2, Sam Krucker 2, Robert P. Lin 1,2 1 Department of Physics, University of.
Varun Bhalerao Dual Channel Photometer for KBO search by occultations Varun Bhalerao Advisor: Shri Kulkarni 24 Sep 2007.
WISE Wide-field Infrared Survey Explorer asteroids Galaxy ULIRGs brown dwarfs WISE will map the sky in infrared light, searching for the nearest and coolest.
Ro etta at teins and toward utetia S Marcello FulchignoniVenezia, April 1 st, 2009 L.
Lunar Observations of Changes in the Earth’s Albedo (LOCEA) Alexander Ruzmaikin Jet Propulsion Laboratory, California Institute of Technology in collaboration.
Dynamical modeling of the DI dust ejecta cloud Tanyu Bonev (Institute of Astronomy and National Astronomical Observatory, Bulgaria) and the ESO DI observing.
Adriana V. R. Silva CRAAM/Mackenzie COROT /11/2005.
1/20 Obtaining Shape from Scanning Electron Microscope Using Hopfield Neural Network Yuji Iwahori 1, Haruki Kawanaka 1, Shinji Fukui 2 and Kenji Funahashi.
Asteroids 2867 Steins and 21 Lutetia: results from groundbased observations and from the Rosetta fly-bys S. Fornasier 1,2, M.A. Barucci 1, M. Fulchignoni.
Physical parameters of Asteroids from GAIA Photometry V. Zappalà, M. Delbò, A. Cellino INAF-Astronomical Observatory of Torino GAIA SSWG Besancon, 6-7.
Hayabusa Data Archives Makoto Yoshikawa (JAXA) COSPAR Capacity Building Workshop on Planetary Science July 23 - Aug. 3, 2007 Montevideo, Uruguay.
Science with the new HST after SM4 WFC3 slitless spectroscopy Harald Kuntschner Martin Kümmel, Jeremy R. Walsh (ST-ECF) WFC3-team at STScI and NASA.
Gamma-Ray Bursts observed with INTEGRAL and XMM- Newton Sinead McGlynn School of Physics University College Dublin.
Asteroids Image Calibration and Setup Making a Lightcurve What is a Lightcurve? Cole Cook  Physics and Astronomy  University of Wisconsin-Eau Claire.
(65803) Didymos What we know about it. Petr Pravec and Petr Scheirich Astronomical Institute AS CR, Ondřejov Observatory IAU General Assembly Hawai’i 2015.
Optical properties Satellite observation ? T,H 2 O… From dust microphysical properties to dust hyperspectral infrared remote sensing Clémence Pierangelo.
The Second TEMPO Science Team Meeting Physical Basis of the Near-UV Aerosol Algorithm Omar Torres NASA Goddard Space Flight Center Atmospheric Chemistry.
Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations. * P. Pravec, A. W. Harris, P. Kušnirák, A.
1 Optical observations of asteroids – and the same for space debris… Dr. D. Koschny European Space Agency Chair of Astronautics, TU Munich Stardust school.
MODELING THE NEOs ORBITAL DISTRIBUTION AND NEO DISCOVERY STRATEGIES A. Morbidelli (OCA) R. Jedicke (Spacewatch) W.F. Bottke (SWRI) P. Michel (OCA) P. Tanga.
PHEMU The Bucharest observational campaign Romanian Astronomical Institute of The Romanian Academy - AIRA ADRIAN SONKA, MARCEL POPESCU, DAN ALIN.
1 Imaging the natural satellites J.E. Arlot IMCCE/CNRS/observatoire de Paris Astro/photo/phemu meeting October 14-18, 2015.
Ground-based infrared retrievals of atmospheric dust properties over Niamey, Niger A case study: dust storm event (7-10 March 2006)* ATMS 790 R- Graduate.
The HESSI Imaging Process. How HESSI Images HESSI will make observations of the X-rays and gamma-rays emitted by solar flares in such a way that pictures.
Recent Advances in Asteroid Polarimetry A.Cellino, E. Ammannito, S. Bagnulo, I.N. Belskaya, R. Gil-Hutton, P. Tanga, E.F. Tedesco.
Spitzer Space Telescope
Markarian 421 with MAGIC telescope Daniel Mazin for the MAGIC Collaboration Max-Planck-Institut für Physik, München
Transient Identification and Classification with WISE Doug Hoffman R. Cutri & T. Jarrett The Eventful Universe, 2010.
Determining asteroid diameters from occultations Dave Herald.
OSIRIS Mars flyby : 3D reconstruction of Phobos and Deimos
The Rosetta Asteroid Targets
H. U. Keller, M. Küppers, L. Jorda, P. Gutierrez, S. Hviid, C
OSIRIS Full Team Meeting -
Determination of photometric properties of Steins
OSIRIS Cruise Science The OSIRIS cameras have demonstrated the capability to do competitive science as astronomical telescopes We should take advantage.
Rotation of 67P. Mottola et al. (2014): Lightcurve photomerty -> Spin period of h.
Jets and sources of activity on 67P observed by OSIRIS
Asteroid 4 Vesta observed from OSIRIS-ROSETTA
M. Lazzarin, S. Marchi Astronomy Dept. Padova
ANALYSIS OF SEQUENCE OF IMAGES MTP003/STP004/TRAIL_001 & TRAIL_002
Observing the parallax effect due to gravitational lensing with OSIRIS
Close asteroids during Steins and Lutetia FB phases
VIRTIS flyby of Steins M-IR Spectral analysis
E-type asteroids and related meteorites
Investigation of different flyby geometries for asteroid Steins - Surface area, stereo and phase angle coverage Sofie Spjuth Max-Planck-Institut für Sonnensystemforschung.
Lutetia geometry and timeline
Summary of the science planned per mission phase
OSIRIS operation summary
Single Object & Time Series Spectroscopy with JWST NIRCam
Thermal modeling of rocky bodies
Polarization Measurements of TNOs and Centaurs
Pluto’s thermal lightcurve: SPITZER/MIPS observations
Requirements Consolidation of the Near-Infrared Channel of the GMES-Sentinel-5 UVNS Instrument: FP, 25 April 2014, ESTEC Height-resolved aerosol R.Siddans.
VIRTIS Operations at Lutetia
Summary Single Object & Time Series Spectroscopy Jeff Valenti JWST Mission Scientist Space Telescope Science Institute.
832 Karin Shows No Rotational Spectral Variations
Diameters, Volumes and bulk densities of 40 asteroids
UVIS Calibration Update
Observational Prospect of NIREBL
Petr Pravec and Petr Scheirich
Rotational Poles and Dimensions of Ceres and Vesta and three STEAs
Future Didymos Observing Strategy
Presentation transcript:

A TARGET OF THE ROSETTA MISSION VISIBLE AND INFRARED OBSERVATIONS OF ASTEROID STEINS, A TARGET OF THE ROSETTA MISSION P. LAMY, L. JORDA, S. FORNASSIER, M. KAASALAINEN, S. LOWRY, M.A. BARUCCI, J. CARVANO, CHOI, F. COLAS, D. CRUIKSHANK, E. DOTTO, G. FAURY, M. FULCHIGNONI, O. GROUSSIN, M. HICKS, KRYSZCZYNSKA, M. KUPPERS, I. TOTH, B. WARNER, P. WEISSMAN Laboratoire d’Astrophysique de Marseille

OBSERVATIONS OF STEINS : OVERVIEW VISIBLE (CCD imaging) - OSIRIS: 1 LC - Ground-based : Many telescopes (ESO NTT...): 25 LCs ►Several light curves at different aspect angles > Rotational period ►Shape from inversion, pole solution, rotational period ►Phase function THERMAL INFRARED - Spitzer Space Telescope with IRS ►Scale the size with minimal assumptions ►Thermal properties (interior) ►Albedo when combined with visible - Classification ►Mineralogy – Classification

OBSERVATIONS 1. Weissman, Lowry and Choi (April 2004, 3 nights) Table Mountain Obs. California. 2. Weissman, Choi, and Lowry (August 2005, 5 nights) CTIO/Chile. 3. Warner B. (March 2004, 5 nights) Palmer Divide Observatory 4. Barucci et al. (November & December 2005, 2 nights) Small NTT/ESO/Chile 5. Colas F. and Kryszczynska A. (August 2005, 2 nights) ITAJUBA Brazil 6. Hicks and Bauer (March 2004) Table Mountain Obs. California. 7. OSIRIS (March 2006, 24 hr) 8. Colas F. and Vachier (Sep, Oct, Dec 2006) Pic-du-Midi observatory 9. Weissman et al. (Jan 2007) Table Mountain + Steward observatories

2867 Steins – Phase function

SHAPE OF ASTEROID STEINS Simultaneous Inversion of 16 Light Curves Direction of rotationnal axis : λ = 265° ± 10° β = + 8° ± 10° Mirror solution λ = 82° ± 10° β = +38° ± 10° Rotational period : 6.0481 ± 0.0004 hr

CALCULATED FROM SHAPE MODEL LIGHT CURVES CALCULATED FROM SHAPE MODEL

Update: modeling Rosetta targets Steins and Lutetia Mikko Kaasalainen Dept. of Mathematics, U. Helsinki Finnish CoE in Inverse Problems Research

Steins 24 LCs from 04-07 Best pole: (-89,250)+-5 Almost exactly perpendicular to the ecliptic: lambda error in 70/250 direction P=6.04681+-0.00002h Oct and Dec 06 LCs were crucial in favouring this pole Scale-free solution

Steins

Asteroid 2867 Steins: SST observations

SST OBSERVATIONS : OVERVIEW INSTRUMENTS IRS Low resolution mode - SL : 5.2 - 14.5 μm - LL : 14 - 38 μm Blue peak-up camera CIRCUMSTANCES - 14 visits equally spaced by ~ 30 mn - Total temporal coverage = 6.5 hr (a full period) - Date : 22 November 2005 - rh = 2.13 AU Δ = 1.60 AU α = 27.2°

2867 Steins – SST spectra

Thermal model fit to SED gives constraints on radius, thermal inertia and albedo. Other parameters (beaming factor,...) assumed. Weakly sensitive on radius.

IR lightcurve from SST spectra allows scaling the 3D model Radius = 2.53 ± 0.08 km Ellipsoid: a = 5.74 ± 0.18 km b= 4.90 ± 0.16 km c = 4.60 ± 0.14 km Thermal inertia = 100 – 300 MKS (for a beaming factor between 0.8 and 1)

Albedo comes from visible obervations since size is known Using a linear phase function which excludes the opposition effect p(V) = 0.23-0.27 p(R) = 0.34-0.40 Somewhat unusual type intermediate between S and E

21 Lutetia: SST observations

21 Lutetia 8 hours of full coverage on 10 December 2006, for a total of 14 spectra covering the wavelength range 5-38 micron. Single exposure time of 6.3 s for each channel Observing conditions: DSpitzer = 2.65AU Phase =21.1° DSun= 2.81 AU One partial Light curve obtained on 11 December 2005 telescope was used for the absolute magnitude computation

21 Lutetia – SST spectra

21 Lutetia – SST spectra IR lightcurve

21 Lutetia: the STM gives a geom. albedo = 0.18, beam. Factor=1.49

PRELIMINARY CONCLUSIONS ASTEROID 2867 STEINS : PRELIMINARY CONCLUSIONS Effective radius = 2.3 to 2.8 km Shape: slightly elongated Rotational period = 6.048 hr Direction of rotational axis Albedo 0.3 to 0.4 => E-type asteroid ► Differentiated bodies which experienced significant heating episodes

Determination of the Rotational Period Discrete Fourier Transform OSIRIS NAC OBSERVATIONS : RESULTS Determination of the Rotational Period T = 6.046 ± 0.013 Method Prot Information entropy Discrete Fourier Transform Lomb-Scargle Method Phase Dispersion Min Analysis of Variance WindowClean Fourier Analysis (2 harmonics) (hour) 6.068 6.027 6.046 6.038 6.057 6.045 6.042 ± 0.009 Mean 6.046 ± 0.013

SST OBSERVATIONS : RESULTS Spectral energy distribution 5 – 36 μm STM fit with η = 1.512 Thermal light curves: integrated flux from 5 – 25 μm 5 – 33 μm

DATA ANALYSIS The Standard Thermal Model was applied for a best fit to the observed IR flux. The radiometric method was used to derive the asteroid ‘ albedo and size.