Pertemuan <<13>> Data Warehousing dan Decision Support

Slides:



Advertisements
Similar presentations
12/18/20141 PSU’s CS Data Warehouses and Decision Support Len Shapiro, for CS386, 11/2-3/05. Some slides taken from Ramakrishnan and Gherke,
Advertisements

Chapter 13 The Data Warehouse
1 Pertemuan > > Matakuliah: >/ > Tahun: > Versi: >
1 Pertemuan > > Matakuliah: >/ > Tahun: > Versi: >
Pertemuan <<12>> Paralel dan Basis Data Terdistribusi
1 Pertemuan 22 Radix Sort Matakuliah: T0016/Algoritma dan Pemrograman Tahun: 2005 Versi: versi 2.
Data Warehousing CPS216 Notes 13 Shivnath Babu. 2 Warehousing l Growing industry: $8 billion way back in 1998 l Range from desktop to huge: u Walmart:
Database – Part 3 Dr. V.T. Raja Oregon State University External References/Sources: Data Warehousing – Mr. Sakthi Angappamudali.
CMPT 354, Simon Fraser University, Fall 2008, Martin Ester 391 Database Systems I Data Warehousing.
ICS 421 Spring 2010 Data Warehousing (1) Asst. Prof. Lipyeow Lim Information & Computer Science Department University of Hawaii at Manoa 3/18/20101Lipyeow.
1 Pertemuan 26 Object Relational Database Management System (Lanjutan) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 02 Database environment Matakuliah: >/ > Tahun: > Versi: >
1 Pertemuan 23 Object database design (Lanjutan bagian 2) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 24 Object database design (Lanjutan bagian 3) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
Introduction to Data Warehousing. From DBMS to Decision Support DBMSs widely used to maintain transactional data Attempts to use of these data for analysis,
1 Pertemuan 14 Object Query Language (Lanjutan bagian 1) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
1 Pertemuan 5 The structure part of object data model Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
Database – Part 2b Dr. V.T. Raja Oregon State University External References/Sources: Data Warehousing – Sakthi Angappamudali at Standard Insurance; BI.
1 Pertemuan 21 Audit Reporting Matakuliah:A0274/Pengelolaan Fungsi Audit Sistem Informasi Tahun: 2005 Versi: 1/1.
1 Pertemuan 11 QUIZ Matakuliah: J0274/Akuntansi Manajemen Tahun: 2005 Versi: 01/00.
CS 286, UC Berkeley, Spring 2007, R. Ramakrishnan 1 Decision Support Chapter 25.
1 Pertemuan 22 Understanding e-CRM Matakuliah: J0324/Sistem e-Bisnis Tahun: 2005 Versi: 02/02.
Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Data Warehousing and Decision Support Chapter 25, Part A.
1 Pertemuan 6 The structure part of object data model (Lanjutan) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
Chapter 13 The Data Warehouse
1 Pertemuan 8 The Object Definition Language (Lanjutan) Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
Data Cube Computation Model dependencies among the aggregates: most detailed “view” can be computed from view (product,store,quarter) by summing-up all.
XCube XML For Data Warehouses By Sven Groot. Data warehouses Contains data drawn from several databases and external sources Contains data drawn from.
Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Decision Support Chapter 23.
CPSC 404, Laks V.S. Lakshmanan 1 Data Warehousing & OLAP Chapter 25, Ramakrishnan & Gehrke (Sections )
DATA WAREHOUSING IN SQL SERVER 2005/2008 BUSINESS INTELLIGENCE.
©Silberschatz, Korth and Sudarshan18.1Database System Concepts - 5 th Edition, Aug 26, 2005 Buzzword List OLTP – OnLine Transaction Processing (normalized,
1 Pertemuan 18 Basisdata (Databases) (Lanjutan) Matakuliah: T0604-Pengantar Teknologi Informasi Tahun: 2008 Versi: 2.0/0.0 Williams, B.K, Stacy C. Sawyer.
Business Intelligence Zamaneh Jahed. What is Business Intelligence? Business Intelligence (BI) is a broad category of applications and technologies for.
Part Two: - The use of views. 1. Topics What is a View? Why Views are useful in Data Warehousing? Understand Materialised Views Understand View Maintenance.
Data warehousing and online analytical processing- Ref Chap 4) By Asst Prof. Muhammad Amir Alam.
1 Data Warehouses BUAD/American University Data Warehouses.
OLAP & DSS SUPPORT IN DATA WAREHOUSE By - Pooja Sinha Kaushalya Bakde.
Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Decision Support Chapter 23.
Data Warehouse & OLAP Kuliah 1 Introduction Slide banyak mengambil dari acuan- acuan yang dipakai.
Data Warehousing.
1 Pertemuan 25 Object Relational Database Management System Matakuliah: M0174/OBJECT ORIENTED DATABASE Tahun: 2005 Versi: 1/0.
Decision Support and Date Warehouse Jingyi Lu. Outline Decision Support System OLAP vs. OLTP What is Date Warehouse? Dimensional Modeling Extract, Transform,
1 Pertemuan 26 Making It Happen Matakuliah: A0194/Pengendalian Rekayasa Ulang Informasi Tahun: 2005 Versi: 1/5.
1 Pertemuan > > Matakuliah: >/ > Tahun: > Versi: >
OLAP & Data Warehousing. R. Ramakrishnan and J. Gehrke1 Decision Support Chapter 23.
Advanced Database Concepts
Database Management Systems, 2 nd Edition. R. Ramakrishnan and J. Gehrke1 Data Warehousing and Decision Support.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke1 Data Warehousing and Decision Support Chapter 25.
Introduction to OLAP and Data Warehouse Assoc. Professor Bela Stantic September 2014 Database Systems.
An Overview of Data Warehousing and OLAP Technology
Data Warehouses and OLAP 1.  Review Questions ◦ Question 1: OLAP ◦ Question 2: Data Warehouses ◦ Question 3: Various Terms and Definitions ◦ Question.
Or How I Learned to Love the Cube…. Alexander P. Nykolaiszyn BLOG:
Data Mining and Data Warehousing: Concepts and Techniques What is a Data Warehouse? Data Warehouse vs. other systems, OLTP vs. OLAP Conceptual Modeling.
Pertemuan <<11>> <<HELP DESK (01) >>
Pertemuan 20 The Business Views of the Technology Architecture
Pertemuan 22 The Business Views of the Technology Architecture
Data Warehousing CIS 4301 Lecture Notes 4/20/2006.
Pertemuan <<6>> Tempat Penyimpanan Data dan Indeks
Data warehouse and OLAP
Chapter 13 The Data Warehouse
Tahun : <<2005>> Versi : <<1/1>>
Data Warehouse.
On-Line Analytical Processing (OLAP)
Data Warehouse and OLAP
Database Vs. Data Warehouse
Data Warehousing: Data Models and OLAP operations
DATA CUBES E0 261 Jayant Haritsa Computer Science and Automation
Data Warehousing Concepts
Data Warehouse and OLAP
Presentation transcript:

Pertemuan <<13>> Data Warehousing dan Decision Support Matakuliah : <<M0264>>/<<Sistem Manajemen Basis Data>> Tahun : <<2006>> Versi : <<1/1>> Pertemuan <<13>> Data Warehousing dan Decision Support

Mahasiswa dapat mendesain data warehousing dan decision support Learning Outcomes Pada akhir pertemuan ini, diharapkan mahasiswa akan mampu : Mahasiswa dapat mendesain data warehousing dan decision support

Pengenalan Decision Support OLAP Multidimensional Aggregation Queries Outline Materi Pengenalan Decision Support OLAP Multidimensional Aggregation Queries Teknik Implementasi OLAP Pengenalan Data Warehousing Views dan Decision Support

Pengenalan Decision Support Increasingly, organizations are analyzing current and historical data to identify useful patterns and support business strategies. Emphasis is on complex, interactive, exploratory analysis of very large datasets created by integrating data from across all parts of an enterprise; data is fairly static. Contrast such On-Line Analytic Processing (OLAP) with traditional On-line Transaction Processing (OLTP): mostly long queries, instead of short update Xacts.

Complex SQL queries and views. OLAP Complex SQL queries and views. Queries based on spreadsheet-style operations and “multidimensional” view of data. Interactive and “online” queries.

Multidimensional Aggregation Queries Collection of numeric measures, which depend on a set of dimensions. E.g., measure Sales, dimensions Product (key: pid), Location (locid), and Time (timeid).

Multidimensional Aggregation Queries Slice locid=1 is shown: 8 10 10 30 20 50 25 8 15 1 2 3 timeid 11 12 13 pid locid

Teknik Implementasi OLAP Bitmap Indexes Join Indexes File Organization

Pengenalan Data Warehousing Consolidate data from many sources in one large repository. Loading, periodic synchronization of replicas. Semantic integration.

Pengenalan Data Warehousing Integrated data spanning long time periods, often augmented with summary information. Several gigabytes to terabytes common. Interactive response times expected for complex queries; ad-hoc updates uncommon.

Views dan Decision Support OLAP queries are typically aggregate queries. Precomputation is essential for interactive response times. The CUBE is in fact a collection of aggregate queries, and precomputation is especially important: lots of work on what is best to precompute given a limited amount of space to store precomputed results. Warehouses can be thought of as a collection of asynchronously replicated tables and periodically maintained views. Has renewed interest in view maintenance!

Metadata Repository OLAP SUPPORTS DATA MINING EXTERNAL DATA SOURCES EXTRACT TRANSFORM LOAD REFRESH DATA WAREHOUSE Metadata Repository SUPPORTS OLAP DATA MINING

<< PENUTUP>> The End Of Database Managements Systems