Energy Transformations

Slides:



Advertisements
Similar presentations
6-7 Problem Solving Using Conservation of Mechanical Energy
Advertisements

Energy Unit Adapted from Motion, Forces, and Energy textbook Copyright 1997 Prentice-Hall Inc.
4 4 Chapter 4: Energy Unit 1: Energy and Motion Table of Contents 4.1: The Nature of Energy 4.2: Conservation of EnergyConservation of Energy 4 4.
Chapter 9:Linear Momentum 8-4 Problem Solving Using Conservation of Mechanical Energy 8-5 The Law of Conservation of Energy 8-6 Energy conservation with.
DEFINITION OF KINETIC ENERGY Kinetic energy is the energy of motion
Energy.
Conservation of Energy. What Is Energy? Energy makes change possible. Science definition: Energy is the ability to do work Measured in Joules, J. Just.
The Nature of Energy 4.1 What is Energy?
Energy: The Ability to Do Work. ENERGY is anything that has the ability to move a sample of matter against a force. ENERGY can come in many different.
Power and Energy. James Joule British physicist James Joule is best known for his work in electricity and thermodynamics Together with the physicist William.
Potential Energy. Potential Energy examples Give four examples of an object that has potential energy (not mentioned in the previous power point)
Energy stored in a Stretched String When stretching a rubber band or a spring, the more we stretch it the bigger the force we must apply.
Elastic Potential Energy.  Elastic Potential Energy (EPE) is a measure of the restoring force when an object changes its shape.
AP Physics C I.C Work, Energy and Power. Amazingly, energy was not incorporated into physics until more than 100 years after Newton.
Mechanical Energy. Kinetic Energy, E k Kinetic energy is the energy of an object in motion. E k = ½ mv 2 Where E k is the kinetic energy measured in J.
Force (N) Compression (cm) By using Hooke’s Law and the graph shown, work out the spring’s Spring Constant.
Chapter 4 Energy. 4-1: The Nature of Energy When something is able to change its environment or itself, it has energy.
NAZARIN B. NORDIN What you will learn: Define work, power and energy Potential energy Kinetic energy Work-energy principle Conservation.
Physics Review Game: Chapter 4 Mr. Vannucci’s Class.
WORK A force that causes a displacement of an object does work on the object. W = F d Work is done –if the object the work is done on moves due to the.
Work, Energy and Power. Energy: Energy can neither be created nor destroyed. It comes in many forms: Kinetic Potential (gravitational, chemical, elastic)
Section 15.1Energy and Its Forms
Energy Study Guide. Potential energy is energy that is stored.
Conservation of Energy Aim: How does energy transfer from one form to another?
Elastic Energy SPH3U. Hooke’s Law A mass at the end of a spring will displace the spring to a certain displacement (x). The restoring force acts in springs.
ENGINEERING PHYSICS SEMESTER /2012. ENGINEERING PHYSICS SUB-CHAPTERS: ● Work and standard units ● Power concept & Power Calculation ● Kinetic energy.
Energy. “What is Energy?” Energy is what makes things ‘happen’ (turning the lights on, driving a car, using a Bunsen, etc.) Energy is measured in ______.
Conservation of Mechanical Energy: Learning Goal
Chapter 6 Power and Energy
P. Sci. Unit 4 Chapter 15 Energy.
Energy.
List five sources of energy that might be able to produce
Chapter 5.2 Notes Potential Energy.
Chapter 7 Work and Energy
Energy Chapter 7 Herriman High Physics.
E Energy Energy Calculating energy Example: Calculating landing speed.
Work Done by a Constant Force
E Energy Energy Calculating energy Example: Calculating landing speed.
Conservation of energy
August 16, 2017 Standard: S8P2a, S8P2b
Work and Energy Chapter 6.
Chapter 5 Work and Energy
Energy!.
November 29th If a total distance of 750 m is covered in a time interval of 25s, the average speed is ______? a.  3, 974 mph b.  3 mph c.  30 mph d.  30.
The ability to cause change
Can’t be created can’t be destroyed
Honors Physics (Spring 2014) Final Exam Review
Potential VS. Kinetic Energy
Essential Question: How do you calculate potential and kinetic energy?
P2.3 Forces in Action.
Springs & Conservation of Energy pg
Work-Energy Theorem Energy is the ability to do work.
Introduction to Energy
HW! Energy Mind map….
Energy.
Energy comes in many forms: mechanical, electrical , magnetic, solar,
ENERGY.
Conservation of Energy
Chapter 4 Energy.
4.
CHAPTER 15: ENERGY!.
Chapter B2 B2.6 Work and Energy.
Unit 5 ENERGY.
Hooke’s Law Period of oscillators
Energy.
The Nature of Energy.
Energy Notes.
Example 1 When a mass of 24kg is hung from the end of a spring, the length of the spring increased from 35cm to 39cm. What is the load on the spring in.
Ch 4 Energy Kinetic Energy (KE) – the energy a moving object has because of its motion; depends on mass and speed of object KE = mv2/2 Joule – SI unit.
GRAVITATIONAL POTENTIAL & KINETIC ENERGY
Presentation transcript:

Energy Transformations and Law of Conservation of Energy

“What is Energy?” Energy is what makes things ‘happen’ (turning the lights on, driving a car, using a Bunsen, etc.) Energy is measured in ______. There are many different forms of energy.

“Energy” has many different forms: Light energy Heat energy Sound energy Electrical energy Radiation energy Kinetic energy Nuclear potential energy Chemical potential energy Gravitational potential energy Elastic potential energy

Law of Conservation of Energy Energy can neither be created nor destroyed. Therefore the total energy in the system is always conserved. Energy can only be transformed or transferred.

The three main forms of Energy in Y12 Physics: 1. Kinetic Energy 2. Gravitational Potential Energy 3. Elastic Potential Energy

Kinetic Energy m = mass of the moving object v = speed of the moving object

Gravitational Potential Energy m = mass of the moving object g = acceleration due to gravity (9.8 ms-2 ↓) h = height of the object

Example: EK & EP Transformation A bowling ball (3 kg) is dropped from the top of a cliff. The cliff is 40 m high. Calculate the gravitational potential energy in the ball at the top. Calculate the kinetic energy of the ball at the bottom. Calculate the instantaneous velocity of the ball at the bottom.

HOWEVER, Therefore the total energy is still conserved! the kinetic energy at the bottom will be just a little bit less than the gravitational potential energy at the top – WHY???? Always some energy will turn into heat energy and sound energy, because of the friction (from the air, in this example). Therefore the total energy is still conserved!

A bullet of mass 30 g is fired with a speed of 400 ms-1 into a sandbag A bullet of mass 30 g is fired with a speed of 400 ms-1 into a sandbag. The sandbag has a mass of 10 kg and is suspended by a rope so that it can swing. Calculate the maximum height that the sandbag rises as it recoils with the bullet lodged inside.

Elastic Potential Energy & Hooke’s Law

Elastic Potential Energy k = spring constant (unit: ________) x = length of stretch or compression

Gravitational Potential Energy Kinetic Energy Elastic Potential Energy

Example: Trampoline A little kid is playing on a trampoline. At one point, he is at the lowest position where the trampoline is stretched down by 50 cm. The spring constant of the trampoline is 0.80. Calculate the elastic potential energy in the trampoline at this position. Calculate the maximum height the kid will reach, if he does not use any energy of his own.

Question: When a mass of 1.0 kg was hung on a spring it extended the spring by 40 cm. If the mass is doubled to 2.0 kg, how much would the spring be extended by? What if the mass is tripled?

Hooke’s Law or F = force applied to stretch or compress x = length of stretch or compression k = spring constant (unit: _______)

Example: A 94 kg child stands on a trampoline and causes the trampoline to sag by 2.90 m. Calculate the trampoline’s spring constant. Calculate the elastic potential energy stored in the trampoline.

Force (N) By using Hooke’s Law and the graph shown, work out the spring’s Spring Constant. Compression (cm)

A bungi jumper (75 kg) jumps off a bridge over a river A bungi jumper (75 kg) jumps off a bridge over a river. The spring constant of the bungi cord is adjusted so that the jumper’s head just touches the river at maximum stretch (30 m). If the natural length of the cord is 10 m, calculate the cord’s spring constant. State any assumption(s) you make.

A toy airplane (500 g) is hanging at the end of a spring A toy airplane (500 g) is hanging at the end of a spring. The spring is 48.0 cm long when hanging vertically. When the airplane is hung from the end of the spring, the length of spring becomes 80.0 cm. Calculate the spring constant. (M) Write a unit with your answer. (A) Calculate the energy stored in the spring when a second toy of mass 400 g is also hung along with the airplane. (M) The 500 g airplane is now hung on a stiffer spring, which has double the spring constant. Discuss how this affects the extension and the elastic potential energy in the spring. (E)

Worksheet NINE