2K CB Internal Piping Flexibility Analysis

Slides:



Advertisements
Similar presentations
3D Beam Large Deflection Analysis ME 501 Tim Allred Jon Bell June 20, 2001.
Advertisements

Beams Stephen Krone, DSc, PE University of Toledo.
WIND FORCES.
Structural Mechanics 6 REACTIONS, SFD,BMD – with UDL’s
S TRUCTURAL A NALYSIS OF M ECHANICAL M ODULES F OR M ODULAR D ESIGNED N UCLEAR P LANTS J UNE, 2011 By: Steven K. Sherfey, P.E. Presented By: Ankit (Andy)
3D Hg Jet Simulations Yan Zhan June 13, Outline Hg Jet Inlet Condition – Case1: Outlet of the pipe without a bend and a weld – Case2: Outlet of.
More Discussions of the Flip Axle (Continued on “Flip Axle” Report #1 by Andy Stefanik) PPD/MD/ME September 08, 2008 Edward Chi.
SOFTWARE USED CAESER II ISOMETRIC DRAWING PREFACE Piping Stress analysis is a term applied to calculations, which address the static and dynamic loading.
TRIFLEX ® Windows Version Load Case Combination TRIFLEX ® Windows Version Load Case Combination 1.
Structures and stress BaDI 1.
Beams Beams: Comparison with trusses, plates t
PIPE FEA USING ANSYS.
PROBLEM mm x y 800 mm P = 1500 N z y 50 mm 100 mm
SELECTION OF SUPPORTING ARRANGEMENT FOR CRITICAL PIPING By DILEEP PILLAI.
13.4. GENERAL DESIGN CONSIDERATIONS: PRESSURE VESSELS
Design Example The 10” TH. wall system shown in the figure below is to be checked for a service gravity load of 3 Kips/ft and a lateral load of 25 Kips,
Eng. Tamer Eshtawi First Semester
ATLAS thermosiphon project Piping design and seismic analysis framework Délio Ramos EN/MME,
Power Plant Construction and QA/QC Chapter 2– Guide to ASME Code VIII, Division 1, Pressure Vessels Engineering Technology Division.
Dump Heating temperature (Revision 2, part 2) Ang Lee April 7,
Forging new generations of engineers
56 MHz SRF Cavity Cryostat support system and Shielding C. Pai
Baseplate Analysis for Anchor Bolts Tolerance Using GT STRUDL Base Plate Wizard Copyright © 2012 URS CONFIDENTIAL – This document is proprietary and competitively.
Mechanics of Materials
Center of Gravity The balance point of an object.
1 MC Assembly over the VV FPA Station 3 FDR Review July 13, 2007 T. Brown.
FEM Analysis of the Stage3 Support Frame H.M. Fan March 14, 2007.
PCI 6 th Edition Lateral Component Design. Presentation Outline Architectural Components –Earthquake Loading Shear Wall Systems –Distribution of lateral.
704 MHz cavity design based on 704MHZ_v7.stp C. Pai
Structural Elements & Design Zach Gutzmer, EIT Civil and Environmental Engineering South Dakota State University.
PIPING STRESS ANALYSIS BY CAESAR-II SOFTWARE
Technical Procurement Plan
Hongyu Bai LCLS-II 2 K Cold Box PDR September 27, 2016
Vishy Ravindranath LCLS-II 2 K Cold Box FDR March 9, 2017
Pipe Integrity Check using Finite Element Analysis
2K Cold Box Structural Analysis
Dana Arenius LCLS-II 4.5K Cold Box Director’s Review November 16, 2016
Process Requirements and Design Approach
2 K Coldbox Safety and ESH
2K Cold Box FDR Introduction
Electrical and Controls
Mechanical Design and Analysis of LCLS II 2 K Cold Box
2K Cold Box Structure Analysis
Design of Beams for Flexure
Overview of Mechanical Design
Tilt N’ Store Design Analysis
Hongyu Bai LCLS-II 2 K Cold Box FDR March 9, 2017
contents Design of beams (week 11,12,13), (10,17,24 Nov.)
Mechanical calculations of the CDS key elements
CENF - LBNF cryostat Relevant safety codes
2K CB FDR Overview:  Agenda, Charge, Review Process
SC1R Cold Box PDR Mechanical Design
2K Cold Box Process Design
2K Cold Box Mechanical Design
2K Cold Box Mechanical Analysis – Anchoring
2K Cold Box Vacuum Vessel Structure Analysis
New Chapter-- Fundamentals of Dimension Determination A Combined Chapters of 4, 6, 8 and 17 Mainly use the Teaching Notes.
2K CB FDR Conclusion:  Project Summary, Procurement Plan / Status
2K Cold Box Internal Piping Flexibility Analysis
Pressure Piping Analysis
2K Cold Box Cost, Schedule & FDR Summary
Fmax = (Fx2+Fy2+Fz2)0.5 < 1500 N (350 lb)
Tilt N’ Store Design Analysis
Silicon Valley, Calif. Presents
Preliminary Pipe Stress Analysis of High Pressure, High Temperature Experimental Helium Cooling System (EHCL) Corresponding Author: Aditya Kumar verma.
Forging new generations of engineers
Deflection of Beams In addition to being safe, the structure must be serviceable ; Serviceable structure is one that performs satisfactorily, not causing.
Lecture # 23 & 24 Compound Stress Objective:-
SC1R Cold Box PDR Assembly Sequence
JLAB CHL 2K COLD BOX REPLACEMENT
Presentation transcript:

2K CB Internal Piping Flexibility Analysis Shirley Yang LCLS-II 2 K Cold Box FDR March 9, 2017

Outline Transportation Nozzle contributing loads +-1.5g lateral acceleration + self weight +- 3g vertical acceleration Nozzle contributing loads Gravity Thermal Gravity + Pressure Gravity + Pressure + Thermal ASME B31.3 Code Stress contributing loads Sustained Expansion Occasional LCLS-II 2 K CBX FDR, Mar 9, 2017

[Cryogenic Plant Seismic Design Criteria, LCLSII-4.8-EN-0227-R2] Load cases Load case Code stresses Operational Sustained + expansion Transportation Self weight + transportation accelerations Seismic Sustained + expansion + occasional (seismic) [Cryogenic Plant Seismic Design Criteria, LCLSII-4.8-EN-0227-R2]

Seismic Load Cal – ASCE 7-10 LCLS-II 2 K CBX FDR, Mar 9, 2017

2K CB Internal Piping Overview LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Inlet Normal Operation Allowable forces - lbf Allowable moments - ft-lbf CC1 Inlet / Outlet 259 254 Nozzle Loads Force - lbf Moment - ft-lb Load Case X Y Z (X^2+Y^2+Z^2)^0.5 MX MY MZ (MX^2+MY^2+MZ^2)^0.5 Gravity -145 145 Thermal 353 -4 4 2 -1 Gravity + Pressure -151 151 1 Gravity + Pressure + Thermal 202 3 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Inlet Normal Operation cont. Code Stresses LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Inlet Normal Operation cont. Reaction forces & Moments on Guides Reaction Forces & Moments on Supports Force - lbf Guide 1 X Y Z (X^2+Y^2+Z^2)^0.5 Gravity -1 -10 10 Thermal 13 265 266 Gravity + Pressure -9 -20 22 Gravity + Pressure + Thermal 4 246 Guide 2 1 9 -32 -212 215 7 18 20 -25 -194 195 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Inlet – Transportation Nozzle Loads Force - lbf Moment - ft-lb Acceleration Combinations X Y Z (X^2+Y^2+Z^2)^0.5 MX MY MZ (MX^2+MY^2+MZ^2)^0.5 1.5g H - 1g V +1.5g T 17 -77 81 -10 -12 10 19 1.5g H - 1g V -1.5g T -130 -17 133 (-1.5g H) - 1g V -1.5g T 12 (-1.5g H) - 1g V +1.5g T (-4g)V -415 415 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Inlet Transportation cont. Code Stresses LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Inlet Transpiration - Anchor Design Reaction Loads on Anchor Support Force - lbf Moment - ft-lb X Y Z (X^2+Y^2+Z^2)^0.5 MX MY MZ (MX^2+MY^2+MZ^2)^0.5 Anchor 1.5g H - 1g V +1.5g T 336 331 326 573 -59 102 -477 491 1.5g H - 1g V -1.5g T 346 -517 -334 706 86 57 -419 432 (-1.5g H) - 1g V -1.5g T -348 330 583 -86 -60 423 436 (-1.5g H) - 1g V +1.5g T -338 -328 699 63 -105 481 496 (-4g)V -3 -372 -6 372 7 8 12 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Inlet Transportation - Anchor Design cont. C4 x 7.25 Channel 2-1/2” Sch40 2” Sch80 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Inlet Transportation - Anchor Design cont. Check the weld between the bottom 2” Sch.80 pipe and bottom plate Max Reaction forces & Moments (from ANSYS 17.2) Weld size: 3/16” Weld Area: 1.01” in^2 Weld Moment of Inertia: Ix = Iz = 0.86 in^4, Iy = 1.72 in^4 Weld Stress = 7.8 kis < 18 ksi OK LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Inlet Guide Support Design Reaction Loads on Guides Guide Design Heat Load LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Outlet Transportation Nozzle Loads: Force - lbf Moment - ft-lb Acceleration Combinations X Y Z (X^2+Y^2+Z^2)^0.5 MX MY MZ (MX^2+MY^2+MZ^2)^0.5 1.5g H - 1g V +1.5g T 9 -2 15 18 -1 2 1.5g H - 1g V -1.5g T -7 -10 (-1.5g H) - 1g V -1.5g T -9 7 10 1 (-1.5g H) - 1g V +1.5g T (-4g)V -12 14 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Outlet Transportation cont. Code Stresses LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Outlet Anchor Reaction Loads on Support Force - lbf Moment - ft-lb Acceleration Combinations X Y Z (X^2+Y^2+Z^2)^0.5 MX MY MZ (MX^2+MY^2+MZ^2)^0.5 1.5g H - 1g V +1.5g T 161 -75 155 236 -322 170 332 493 1.5g H - 1g V -1.5g T -48 -159 231 334 14 (-1.5g H) - 1g V -1.5g T -161 -94 243 -14 -321 455 (-1.5g H) - 1g V +1.5g T -66 -158 235 -170 492 (-4g)V -284 -7 284 24 21 32 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Outlet Normal Operation Nozzle Loads Nozzle Loads Force - lbf Moment - ft-lb Load Case X Y Z (X^2+Y^2+Z^2)^0.5 MX MY MZ (MX^2+MY^2+MZ^2)^0.5 Gravity -74 74 -41 1 4 41 Thermal -23 68 16 -62 -18 -130 145 Gravity + Pressure -76 76 -40 6 40 Gravity + Pressure + Thermal -8 29 -102 -124 161 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC1 Outlet Normal Operation cont. Code Stresses LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Inlet – Normal Operation Nozzle Loads Nozzle Loads Force - lbf Moment - ft-lb Load Case X Y Z (X^2+Y^2+Z^2)^0.5 MX MY MZ (MX^2+MY^2+MZ^2)^0.5 Gravity -4 -157 157 -8 8 Thermal 4 51 -30 59 2 -20 20 Gravity + Pressure -7 7 Gravity + Pressure + Thermal -106 111 -27 28 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Inlet – Normal Operation cont. Code Stresses LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Inlet – Normal Operation cont. Reaction Loads on Supports Guide 1 Force - lbf Load Case X Y Z (X^2+Y^2+Z^2)^0.5 Gravity -37 -4 37 Thermal 40 -293 296 Gravity + Pressure -36 -2 36 Gravity + Pressure + Thermal 4 -295 295 Guide 2 41 5 42 -61 355 361 2 -20 358 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Inlet – Transportation Nozzle Loads Force - lbf Moment - ft-lb Acceleration Combinations X Y Z (X^2+Y^2+Z^2)^0.5 MX MY MZ (MX^2+MY^2+MZ^2)^0.5 1.5g H - 1g V +1.5g T 7 -103 103 -2 -70 2 70 1.5g H - 1g V -1.5g T -179 180 -17 17 (-1.5g H) - 1g V -1.5g T -7 -57 8 58 -1 (-1.5g H) - 1g V +1.5g T -133 134 (-4g)V -472 472 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Inlet – Transportation Cont. Code Stresses LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Inlet – Transportation Cont. Reaction Loads on Supports Force - lbf Moment - ft-lb Anchor X Y Z (X^2+Y^2+Z^2)^0.5 MX MY MZ (MX^2+MY^2+MZ^2)^0.5 1.5g H - 1g V +1.5g T 436 -99 421 614 244 911 -239 973 1.5g H - 1g V -1.5g T 437 -331 -420 691 503 81 632 811 (-1.5g H) - 1g V -1.5g T -430 125 418 612 -453 -83 423 625 (-1.5g H) - 1g V +1.5g T -429 -107 -423 -195 -913 448 1036 (-4g)V 14 -413 -4 413 99 -3 430 Guide1 -10 -7 12 -6 3 6 5 -2 10 8 13 Guide2 106 102 148 101 -96 141 -100 97 139 -106 -104 2 4 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Inlet Anchor Design Same design as the anchor support on CC1 Inlet Section LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Inlet Anchor Design cont. Check the weld between the bottom 2” Sch.80 pipe and bottom plate Max Reaction forces & Moments (from ANSYS 17.2) Weld size: 3/16” Weld Area: 1.01” in^2 Weld Moment of Inertia: Ix = Iz = 0.86 in^4, Iy = 1.72 in^4 Weld Stress = 10.4 kis < 18 ksi OK LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Outlet / CC3 Inlet – Transportation CC2 Outlet Transportation Nozzle Loads Force - lbf Moment - ft-lb Acceleration Combinations Axial Lateral Force Combination Torsion Bend Moment Combination 1.5g H - 1g V +1.5g T 63 -88 65 126 -29 -57 -75 99 1.5g H - 1g V -1.5g T -44 -59 97 17 71 -25 (-1.5g H) - 1g V +1.5g T -60 -39 -22 -78 -54 (-1.5g H) - 1g V -1.5g T 5 85 24 50 -3 56 (-4g)V 4 -110 8 111 -7 -9 -105 105 CC3 Inlet Transportation Nozzle Loads Force - lbf Moment - ft-lb Acceleration Combinations Lateral Axial Force Combination Bend Torsion Moment Combination 1.5g H - 1.5g V +1.5g T 46 -24 45 69 -29 -10 32 44 1.5g H - 1.5g V -1.5g T -146 -46 160 30 (-1.5g H) - 1.5g V +1.5g T 10 -32 (-1.5g H) - 1.5g V -1.5g T (-4g)V -227 -1 227 2 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Outlet / CC3 Inlet – Transportation cont. Code Stresses LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Outlet / CC3 Inlet – Anchor Design Reaction loads on Anchor Support Force - lbf Moment - ft-lb X Y Z Resultant Mx My Mz 1.5g H - 1g V +1.5g T 117 -81 118 185 13 -14 -70 72 1.5g H - 1g V -1.5g T -3 -121 168 12 -59 60 (-1.5g H) - 1g V +1.5g T -119 -130 212 38 73 (-1.5g H) - 1g V -1.5g T 52 178 26 14 71 77 (-4g)V -4 -267 -6 267 3 78 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Outlet / CC3 Inlet – Anchor Design cont. Weld between 2” bottom pipe and bottom plate Reaction Loads from ANSYS 17.2 Weld size: 3/16” Weld Area: 1.01” in^2 Weld Moment of Inertia: Ix = Iz = 0.86i n^4, Iy = 1.72 in^4 Weld Stress = 6.5 ksi < 18 ksi OK LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Outlet / CC3 Inlet – Normal Operation CC2 Outlet Nozzle Loads Force - lbf Moment - ft-lb Load Case X Y Z (X^2+Y^2+Z^2)^0.5 MX MY MZ (MX^2+MY^2+MZ^2)^0.5 Gravity 2 -73 73 5 -2 -84 84 Thermal 22 21 -19 35 95 87 129 Gravity + Pressure -83 Gravity + Pressure + Thermal 24 -53 61 101 4 CC3 Inlet Nozzle Loads Force - lbf Moment - ft-lb Load Case X Y Z (X^2+Y^2+Z^2)^0.5 MX MY MZ (MX^2+MY^2+MZ^2)^0.5 Gravity -2 -78 78 6 -1 -14 15 Thermal -22 -21 19 35 -67 -6 -61 91 Gravity + Pressure -13 Gravity + Pressure + Thermal -24 -98 103 -7 -75 97 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Outlet / CC3 Inlet – Normal Operation cont. Code Stresses LCLS-II 2 K CBX FDR, Mar 9, 2017

CC3 Outlet – CC6 Inlet Sections CC3 Outlet - CC4 Inlet, CC4 Outlet - CC5 Inlet, CC5 Outlet to Bayonet and CC6 Inlet to bayonet sections are very similar to the CC2 Outlet – CC3 Inlet section. Nozzle loads for normal operation meet requirement. Code Stresses are far below the allowable stresses. Anchor is the same design as it on CC2 Outlet – CC3 Inlet section. Anchor is strong enough for the transportation load. LCLS-II 2 K CBX FDR, Mar 9, 2017

CC6 Outlet - Transportation Force - lbf Moment - ft-lb Acceleration Combinations X Y Z Force Combination Mx My Mz Moment Combination 1.5g H - 1g V +1.5g T 38 54 -12 29 9 32 1.5g H - 1g V -1.5g T 37 7 -35 51 14 -32 2 35 (-1.5g H) - 1g V +1.5g T -36 -23 36 56 -17 33 10 (-1.5g H) - 1g V -1.5g T -37 -16 55 -28 3 (-4g)V -6 24 25 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC6 Outlet – Transportation cont. Code Stresses LCLS-II 2 K CBX FDR, Mar 9, 2017

CC6 Outlet – Anchor Design Reaction Loads on Anchor Support Force - lbf Moment - ft-lb A8 X Y Z Force Combination Mx My Mz Moment Combination 1.5g H - 1g V +1.5g T 59 32 56 87 -92 -9 94 132 1.5g H - 1g V -1.5g T 61 -65 -62 108 99 -7 97 139 (-1.5g H) - 1g V +1.5g T -59 -41 60 -98 8 (-1.5g H) - 1g V -1.5g T -58 -138 160 93 9 -95 133 (-4g)V 3 -212 -4 212 2 1 -2 B04 138 -28 140 198 71 -79 -57 120 127 77 -120 191 49 66 82 -128 -146 117 227 -34 -63 12 72 -139 -42 -143 204 -56 73 123 -6 29 6 31 43 D03 92 114 173 34 -19 39 100 -31 143 -156 -89 180 -99 150 144 -12 106 179 -91 -201 239 -46 36 -174 174 -25 42 LCLS-II 2 K CBX FDR, Mar 9, 2017

CC6 Outlet – Anchor Design cont. Worst load case is applied to the model. Anchor Support will not be overstressed. LCLS-II 2 K CBX FDR, Mar 9, 2017

CC2 Outlet / CC3 Inlet – Anchor Design cont. Weld between 2” bottom pipe and bottom plate Reaction Loads from ANSYS 17.2 Weld size: 3/16” Weld Area: 1.01” in^2 Weld Moment of Inertia: Ix = Iz = 0.86 in^4, Iy = 1.72 in^4 Weld Stress = 10.0 ksi < 18 ksi OK LCLS-II 2 K CBX FDR, Mar 9, 2017

Documentation Document No. Title Author Status 79222-P0003 2K CB Internal Piping Flexibility Analysis Report S. Yang In Development LCLS-II 2 K CBX FDR, Mar 9, 2017

Conclusion Load case Conclusions Operational (sustained and expansion) Loads on CC casing nozzles are less than the operational allowable loads Transportation Stresses are less than the code allowable stress of SS304L The anchor supports are strong enough to support the transportation loads Seismic (sustained, expansion, and occasional) Stresses are less than the code allowable stress