Formulas Gestures Music Mathematics

Slides:



Advertisements
Similar presentations
(Fuzzy Set Operations)
Advertisements

Mathematical Preliminaries
Excursions in Modern Mathematics Sixth Edition
Lalgèbre des symétries quantiques dOcneanu et la classification des systèms conformes à 2D Gil Schieber Directeurs : R. Coquereaux R. Amorim (J. A. Mignaco)
SPECIAL PURPOSE ELEMENTS
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
On-line Construction of Suffix Trees Chairman : Prof. R.C.T. Lee Speaker : C. S. Wu ( ) June 10, 2004 Dept. of CSIE National Chi Nan University.
Sarang Joshi #1 Computational Anatomy: Simple Statistics on Interesting Spaces Sarang Joshi, Tom Fletcher Scientific Computing and Imaging Institute Department.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
4.4.1 Generalised Row Echelon Form
Unité 3 Leçon oui! Yes! 2. mais oui! Sure! 3. Bien sûr! Of course! 4. Non! No 5. Mais non! Of course not! 6. Peut-être Maybe 7. Pierre est….. Pierre.
Tintu David Joy. Agenda Motivation Better Verification Through Symmetry-basic idea Structural Symmetry and Multiprocessor Systems Mur ϕ verification system.
The Unifying View on Ordinary Differential Equations and Automatic Differentiation, yet with a Gap to Fill Alexander Gofen What was unified? Conventions.
Discrete time Markov Chain
The Fourier Transform I
Joint work with Andre Lieutier Dassault Systemes Domain Theory and Differential Calculus Abbas Edalat Imperial College Oxford.
Abbas Edalat Imperial College London Contains joint work with Andre Lieutier (AL) and joint work with Marko Krznaric (MK) Data Types.
1Computer Graphics Homogeneous Coordinates & Transformations Lecture 11/12 John Shearer Culture Lab – space 2
Discrete Mathematics 3. MATRICES, RELATIONS, AND FUNCTIONS Lecture 5 Dr.-Ing. Erwin Sitompul
Discrete Mathematics Dr.-Ing. Erwin Sitompul
Splines I – Curves and Properties
Chapter 10: The Traditional Approach to Design
Systems Analysis and Design in a Changing World, Fifth Edition
Lecture 15 Functions CSCI – 1900 Mathematics for Computer Science Fall 2014 Bill Pine.
Transformations Ed Angel Professor Emeritus of Computer Science
Chapter 6 Languages: finite state machines
Equivalence Relations
Math Review with Matlab:
Lecture 1 RMIT University, Taylor's University Learning Objectives
© Imperial College LondonPage 1 Model checking and refinement checking for modal transition systems and their cousins MTS meeting 2007 Adam Antonik & Michael.
1 A camera is modeled as a map from a space pt (X,Y,Z) to a pixel (u,v) by ‘homogeneous coordinates’ have been used to ‘treat’ translations ‘multiplicatively’
Dmitri Tymoczko Princeton University
Degenerations of algebras. José-Antonio de la Peña UNAM, México Advanced School and Conference on Homological and Geometrical Methods in Representation.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Penser la musique dans la logique fonctorielle.
PHONICS REVISION.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science architecture du livre „The Topos of Music“
I. Homomorphisms & Isomorphisms II. Computing Linear Maps III. Matrix Operations VI. Change of Basis V. Projection Topics: Line of Best Fit Geometry of.
I. Isomorphisms II. Homomorphisms III. Computing Linear Maps IV. Matrix Operations V. Change of Basis VI. Projection Topics: Line of Best Fit Geometry.
1 Category Theory in a ( E,M ) -category Some aspects of category theory, in particular related to universality, can be developed in any finitely complete.
The Relationship between Topology and Logic Dr Christopher Townsend (Open University)
MA5209 Algebraic Topology Wayne Lawton Department of Mathematics National University of Singapore S ,
Preview of Calculus.
Mathematical Theory Mathematical Theory of Gestures in Music Guerino Mazzola U Minnesota & Zürich
Category Theory By: Ashley Reynolds. HISTORY OF CATEGORY THEORY  In 1942–45, Samuel Eilenberg and Saunders Mac Lane introduced categories, functors,
Introduction Transformation theory is a branch of music theory that studies how musical objects, such as tonal areas, rhythm, or chords can transform from.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Concepts locaux et globaux. Première partie:
RUBATO composer Seminar Guerino Mazzola U Minnesota & Zürich Guerino.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Mathematical Music Theory — Status Quo 2000.
Odd homology of tangles and cobordisms Krzysztof Putyra Jagiellonian University, Kraków XXVII Knots in Washington 10 th January 2009.
Gauge Fields, Knots and Gravity Wayne Lawton Department of Mathematics National University of Singapore (65)
The homology groups of a partial monoid action category Ahmet A. Husainov
David Renardy.  Simple Group- A nontrivial group whose only normal subgroups are itself and the trivial subgroup.  Simple groups are thought to be classified.
Guerino Mazzola U & ETH Zürich Guerino Mazzola U & ETH Zürich
Mathematics: The music of the reason, Music: mathematics of sense. Prof. Dr. Emilio Lluis-Puebla.
Concepts locaux et globaux. Deuxième partie: Théorie ‚fonctorielle‘
Musical Gestures and their Diagrammatic Logic Musical Gestures and their Diagrammatic Logic Guerino Mazzola U & ETH Zürich U & ETH Zürich
Guerino Mazzola U & ETH Zürich U & ETH Zürich Global Networks in Computer Science? Global Networks in Computer.
SECTION 8 Groups of Permutations Definition A permutation of a set A is a function  ϕ : A  A that is both one to one and onto. If  and  are both permutations.
Guerino Mazzola U & ETH Zürich Topos Theory for Musical Networks Topos Theory for Musical Networks.
Guerino Mazzola U & ETH Zürich Internet Institute for Music Science Classification Theory and Universal Constructions.
COMPUTING GLOBAL DIMENSIONS OF ENDOMORPHISM RINGS OVER MODULES OF FINITE COHEN-MACAULAY TYPE Brandon Doherty Supervisor: Dr. Colin Ingalls.
MA5209 Algebraic Topology Wayne Lawton Department of Mathematics National University of Singapore S ,
Les boites à outil du mardi ! Matrices d'incidence marquées et calculs de chemins dans les graphes GHED.
Algebraic Topology Simplicial Homology Wayne Lawton
Unit-III Algebraic Structures
IDEALS AND I-SEQUENCES IN THE CATEGORY OF MODULES
Lecture 7 Functions.
V THREE COLLABORATIVE PILLARS
MA5242 Wavelets Lecture 1 Numbers and Vector Spaces
Chapter 3: Simplicial Homology Instructor: Yusu Wang
Presentation transcript:

Formulas Gestures Music Mathematics Alexander Grothendieck: „This is probably the mathematics of the new age“ Guerino Mazzola U Minnesota & Zürich mazzola@umn.edu   guerino@mazzola.ch     www.encyclospace.org        

Yoneda‘s Lemma in Music: Reinventing Points Nobuo Yoneda (1930-1996) Look differently at spaces! Take points as being affine homomorphisms from the zero space A=0. Here is the generic notation and visualization: Apoint is an A-parametrized set of points in F.

A@F Hom(A,F) f·g change of address g f space F A B Look differnetly at spaces! Take points as being affine homomorphisms from the zero space A=0. Here is the generic notation and visualization: Apoint is an A-parametrized set of points in F. A@F Hom(A,F)

Sets cartesian products X x Y disjoint sums X È Y powersets XY characteristic maps c: X —> 2 no „algebra“ RMod@ = RModopp@Ens = {F: RModopp —> Sets} presheaves have all these properties RMod abelian category, direct sums etc. has „algebra“ no powersets no characteristic maps

C  Ÿ12 (pitch classes mod. octave) C  Ÿ12 ~> Trans(C,C)  Ÿ12@Ÿ12 (@Ÿ12 = (Hom(-, Ÿ12)) C  Ÿ12 M A@F   A@M A  RMod F  RMod@ C  2A@F = A@2F A@W = {sub-presheaves of @A} = {sieves in A} W 2 Gottlob Frege C^ A@WF = {sub-presheaves of @A  F} = {F-sieves in A}

1A f:B  A B@C^ = {(f:BA, c.f)| c  C}  B@A  B@F C f@C^ = C.f F @A applications of general case to harmonic topologies, ToM ch 24

Category RLoc of local compositions (over R): objects = F-sieves in A, i.e. K  @A  F morphisms: K  @A  F, L  @B  G f: K  L : A  B (change of address) such that there is h: F  G with: K  @A  F f @  h f/: K  L L  @B  G Full subcategories RObLoc  RLoc of objective local compositions K = C^ and RLocMod  RObLoc of modular local compositions, C  A@M, M = R-module

x: O ® Ÿ12 x O O = { } x: Ÿ12 ® Ÿ12 z Î Ÿ12@Ÿ12 z: Ÿ12 ® Ÿ12 Thomas Noll 1995: models Hugo Riemann‘s harmony self-addressed tones x O x: O ® Ÿ12 x: Ÿ12 ® Ÿ12 Euclid‘s punctual address O = { } z: Ÿ12 ® Ÿ12 z Î Ÿ12@Ÿ12

f „relative consonances“ Dt dominant triad {g, b, d} Tc tonic triad {c, e, g} „relative consonances“ f Trans(Dt,Tc) = < f  Ÿ12@Ÿ12 | f: Dt ® Tc > Fuxian counterpoint: ƒe: Ÿ12 @Ÿ12 ® Ÿ12 [e] @ Ÿ12 [e] Trans(Dt,Tc) = Trans(Ke, Ke)|ƒe

thread (« Faden ») Pierre Boulez structures Ia (1952)  analyzed by G. Ligeti The composition is a system of threads!

Ÿ12 S dodecaphonic series 11 A = Ÿ11, F = Ÿ12 (pitch classes) Messiaen: modes et valeurs d‘intensité Ÿ12 S 11 strong dichotomy of class 71 symmetry T7.11 A = Ÿ11, F = Ÿ12 (pitch classes) S: Ÿ11  Ÿ12, S = (S0, S1, ... S11) ei ~> Si, e1 = (1, 0, ... 0), etc. e0 = 0

The yoga of Boulez‘s construction is a canonical system of address changes on address Ÿ11  Ÿ11 (affine tensor product) generating new series of series used in the composition.

3, 2, 9, 8, 7, 6, 4, 1, 0, 10, 5, 11 4, 5, 10, 11, 0, 1, 3, 6, 7, 9, 2, 8 T7.11 A:ist. 11 B:ist. 11 A:ist. 10 B:ist. 10 A:ist. 9 B:ist. 9 A:ist. 8 B:ist. 8 A:ist. 7 B:ist. 7 A:ist. 6 B:ist. 6 A:ist. 5 B:ist. 5 A:ist. 4 B:ist. 4 A:ist. 3 B:ist. 3 A:ist. 2 B:ist. 2 A:ist. 1 B:ist. 1 A:ist. 0 B:ist. 0

Gérard Milmeister part A part B

fourth movement: Coherence/Opposition

I II III IV V VI VII global theory

J = {I, II,..., VII} triadic degrees in K covering KJ nerve n(KJ) = harmonic strip I IV II VI V III VII

The category RGlobMod of global modular compositions: objects: - an address A, - a covering I of a finite set G by subsets Gi, - atlas (Ki)I, Ki  A@Mi , Mi = R-modules - bijections gi: Gi ® Ki - gluing conditions: (gj gi-1)/IdA: Kij  Kji = A-addressed global modular composition GI morphisms:...

Theorem (global addressed geometric classification) Let A be a locally free module of finite rank over a commutative R. Consider the A-addressed global modular compositions GI with the following properties (*): the modules R.Gi generated by the charts Gi are locally free of finite rank the modules of affine functions G(Gi) are projective Then there exists a subscheme Jn* of a projective R-scheme of finite type whose points w: Spec(S) ® Jn* parametrize the isomorphism classes of SRA -addressed global modular compositions with properties (*). ToM, ch 15, 16

balance objective Yoneda f: X  Y Cat  Frege  @f: @X  @Y

resolution A i (Gi)res  (i) res GI (Gi) A@R Gi 3 6 1 4 5 2 4 6 Edgar Varèse resolution A (Gi)res  (i) GI 1 2 3 4 6 5 Gi A@R (Gi)

(Gi Gj)res  (i  j) i N = (Gi)res  (i) 3 6 (Gi)res  (i) 1 4 5 (Gi Gj)res  (i  j) i N = (Gi)res  (i) N = 2    pr(/) (N) = N N A@limnerf(AD)(F) A@R

Category ∫C of C-addressed points objects of ∫C x: @A  F, F = presheaf in C@ ~ x  F(A), write x: A  F A = address, F = space of x F A x x h  y morphisms of ∫C x: A  F, y: B  G h/: x  y F A  G B  address change

x:   ∫C local network in C = diagram x of C-addressed points xi: Ai Fi hilq/ilq hjms/jms hlip/lip hjlk/jlk hllr/llr xj: Aj Fj xm: Am Fm xl: Al Fl hijt/ijt x:   ∫C PNM 2004 Applications: neural networs, automata, OO classes coordinate of x

A = 0 D (3, 7, 2, 4)  0@lim(D) Ÿ12 3 7 2 4  T4 T5.-1 T11.-1 T2 Klumpenhouwer networks

network of dodecaphonic series Ÿ12 s Ks T11.-1/Id Id/T11.-1 s Ÿ11 Us UKs

Musical Transformational Theory David Lewin Generalized Musical Intervals and Transformations Cambridge UP 1987/2007: If I am at s and wish to get to t, what characteristic gesture should I perform in order to arrive there? (Opposition to what he calls cartesian approach, of res extensae.) This attitude is by and large the attitude of someone inside the music, as idealized dancer and/or singer. No external observer (analyst, listener) is needed.

Gestures in Performance Theory Theodor W. Adorno Towards a Theory of Musical Reproduction (1946) Polity, 2006: Correspondingly the task of the interpreter would be to consider the notes until they are transformed into original manuscripts under the insistent eye of the observer; however not as images of the author‘s emotion—they are also such, but only accidentally—but as the seismographic curves, which the body has left to the music in its gestural vibrations. Robert S. Hatten Interpreting Musical Gestures, Topics, and Tropes 2004, Indiana UP 2004, p.113 Given the importance of gesture to interpretation, why do we not have a comprehensive theory of gesture in music?

Free Jazz Cecil Taylor The body is in no way supposed to get involved in Western music. I try to imitate on the piano the leaps in space a dancer makes.

Gilles Châtelet (1944-1999) Henri Poincaré (1854-1912) Le geste est élastique, il peut se ramasser sur lui-même, sauter au-delà de lui-même et retentir, alors que la fonction ne donne que la forme du transit d'un terme extérieur à un autre terme extérieur, alors que l'acte s'épuise dans son résultat. (...) Figuring Space, 2000 Localiser un objet en un point quelconque signifie se représen-ter le mouvement (c'est-à-dire les sensations musculaires qui les accompagnent et qui n'ont aucun caractère géométrique) qu'il faut faire pour l'atteindre. La valeur de la science, 1905

in algebra, we compactify gestures to formulas rotation matrix formula a11x+a12y+a13z = a a21x+a22y+a23z = b a31x+a32y+a33z = c a11 a12 a13 a21 a22 a23 a31 a32 a33 x y z a b c =

the Fregean drama: morphisms/fonctions are the „phantoms“ (prisons the Fregean drama: morphisms/fonctions are the „phantoms“ (prisons?) of gestures. X Y f(x) x (x) (x teleportation

X „Two attempts of reanimation“ 1. Gabriel: formulas via digraphs = „quiver algebras“ S P T Q K X => RK, quiver algebra => R[X], polynomial algebra mathematics of Lewin‘s musical transformation theory

2. Multiplication of complex numbers: from phantom to gesture: infinite factorization ¬ Robert Peck: imaginary rotation x.eit — x -x

balance objectve Yoneda f: X  Y Cat  morphic Yoneda? Frege  @f: @X  @Y @f: @X  @Y Châtelet 

Journal of Mathematics and Music 2007, 2009 Taylor & Francis MCM Proceedings 2011 Springer

Gesture =. -addressed point g:  . in spatial digraph X Gesture = -addressed point g:   in spatial digraph X of topological space X (= digraph of continuous curves I  X I = [0,1]) X  body skeleton position pitch time X g 

realistic forms? tip space position pitch time  p

Digraph(, X) = topological space of gestures Digraph(, X) = topological space of gestures with skeleton  and body in X notation:  @X  Hypergestures! „loop of loops“ knot circle

ET dance gesture time space space

Proposition (Escher Theorem) For a topological space X, a sequence of digraphs 1 , 2, ... n and a permutation  of 1, 2,... n, there is a homeomorphism 1@ ... n@X  (1)@ ... (n)@X 

counterpoint

Escher Theorem for Musical Creativity

Gestoids: from gestures to formulas The homotopy classes of curves of a gesture g define the R-linear category Gestoid RGg of gesture g, R = commutative ring. It is generated by R-linear combinations n ancn of homotopy classes cn of the gesture‘s curves joining given points x, y. y x

n an ei2nt 1(X)  Ÿn, n ≥ 0? ei2t X = S1 ei2nt ~ n — i— 1 i X = S1 1(X)  Ÿn, n ≥ 0? Yes: All groups are fundamental groups! ei2t g: ¬ Gg  ¬ 1(S1) fundamental group 1(S1)  Ÿ ei2nt ~ n n an ei2nt ~ Fourier formula f(t) = n an ei2nt

Dancing the Violent Body of Sound Diyah Larasati Bill Messing Schuyler Tsuda Dancing the Violent Body of Sound

How can we „gestify“ formulas? Category [f] of factorizations of morphism f inC: objects morphisms f X Y W u v g X Y W u v Z a b If C is topological, then [f] is canonically a topological category

Curve spaces? These are the „infinite factorizations“: Order category  = {0 ≤ x ≤ y ≤ 1} of unit interval I f X Y W0 u0 v0 W1 u1 v1  c = continuous functor for chosen topology on [f] curve space = @[f]

f = @[f] [f] : c ~> c(0), c(1)  Gestures ? spatial digraph f = @[f] [f] : c ~> c(0), c(1)  A -gesture in f is a -addressed point g:   f  X f g  Y Gest[f] = Digraph / f  X Y = Gest[f] ∏ X@Y Y Z  X Y  X Z bicategories...

Categorical gestures and homological constructions More generally: For any topological category X we have a curve space = @X, whose elements, the categorical curves, are continuous functors  → X instead of continuous curves. @X is canonically a topological category, morphisms = continuous natural transformations between categorical curves. Categorical gestures are gestures g with values in the spatial digraph X = @X X: c ~> c(0), c(1)  g:  → X  The set of these categorical gestures is a topological category, denoted by @X.

Proposition (Categorical Escher Theorem) For a topological category X, a sequence of digraphs 1 , 2, ... n and a permutation  of 1, 2,... n, there is a categorical homeomorphism 1@ ... n@X  (1)@ ... (n)@X 

Two homological constructions for categorical gestures: Extension modules. In loc. cit. we have shown that gestures in factorization categories [f] in RMod can be used to define the classical extension modules Extn(W, Z) for R-modules W, Z. loc. cit.

Singular homology for gestures 𝜎1 I0 𝜎0 I2 𝜎2 𝛾4 𝛾1 𝛾2 𝛾3 Observe that a singular n-chain c: In → X with values in a topological space X is also a 1-chain c: I → In-1@X, etc. The n-chain R-module Cn(R, X) is generated by iterated 1-chains: In@X  I@I@...I@X.  Replacing I by the topological category  and X by a topological category, a n-chain can be interpreted as a hypergesture in ↑@↑@... ↑@X, the n-fold hypergesture category over the line digraph ↑= • → •

Using the Escher Theorem, we have boundary homomorphisms ∂n: Cn(X.*) → Cn-1(X.*) for any sequence * of digraphs, generalizing ↑↑... ↑, and ∂2 = 0, whence homology modules Hn = Ker(∂n)/Im(∂n+1).

instrumental interface position pitch time gestures l h e sound objects instrumental interface instrumentalize thaw  More precisely, performance is a transformation P from the symbolic reality of the score to the physical reality of sounds (a quarter note is not determined in its physical duration, only the metronome yields the relation between symbolic reality and physical reality). The mathematical analysis of tempo and pitch transformations shows that the performance transformation P can be described by a performance vector field, as shown to the left in the symbolic parameter space. Essentially, performance is calculated via integration of such performance vector fields, much as the time is calculated via integration of the tempo curve. In this language, performance operators are built in order to produce new performance fields from the old ones inherited from the relative mothers. score analysis

Gilles Châtelet (1944 - 1999) Figuring Space. Kluwer 2000: The gesture is elastic: it can crouch on itself, leap beyond itself and rever- berate, whereas the function gives only the form of the transit from one external term to another external term, whereas the act exhausts itself in its result. The gesture is therefore involved with the implicit pole of the relation. It‘s the tamed gestures which make reference.

space ~ spatium ~ ex pati point ~ pungere (to prick) Giuseppe Longo 1999/Henri Poincaré (Géométrie et Cognition) La Géométrie des Grecs était une "science des figures"; avec Riemann, et après Descartes, elle est devenue une "science de l'espace". Poincaré est allé plus loin, en soulignant le rôle du mouvement dans l'espace : « un être immobile n'aurait jamais pu acquérir la notion d'espace puisque, ne pouvant corriger par ses mouvements les effets des changements des objets extérieurs, il n'aurait eu aucune raison de les distinguer des changements d'état» [Poincaré, La Science et l'Hypothèse 1902, p. 78] ...« localiser un objet en un point quelconque signifie se représenter le mouvement (c'est-à-dire les sensations musculaires qui les accompagnent et qui n'ont aucun caractère géométrique) qu'il faut faire pour l'atteindre» [Poincaré, La valeur de la Science 1905, p. 67]. space ~ spatium ~ ex pati point ~ pungere (to prick) Paul Klee (trajectory of eyes ~ grazing cows) Embodied AI—> Rolf Pfeifer et al. ...

hypergesture impossible!  h morphism exists! g h

I1 I0 I2 𝜎0 𝜎1 𝛾1 𝛾2 𝜎2 𝛾4 𝛾3 hypergesture impossible!

action of Ÿn S3 Ÿn 1(S3)  0 1 Ln,1 1(Ln,1) = Ÿn

example: C = GLn(—), [f]  GLn(—)2, usual topology  c cI = continuous I GLn+ GLn-

Gest[h]  Gest[f] Gest[h°f] Y Z  X Y  X Z bicategories... f: X  Y, h: Y  Z Gest[h]  Gest[f] Gest[h°f] p q* Y Z  X Y  X Z bicategories... h  f h°f geometric morphism, q* is logical f p q* q*  h  Study geometric morphisms Q*, Q*, e.g. when do they stem from composition h°f ?