Wide Dynamic range readout preamplifier for Silicon Strip Sensor

Slides:



Advertisements
Similar presentations
The group is developing readout electronics for initial use with the prototype test-stand at Fermilab. This work will contribute towards the design and.
Advertisements

Status of test beam data analysis … with emphasis on resistive coating studies Progress and questions 1Meeting at CEA Saclay, 25 Jan 2010Jörg Wotschack,
Sci-Fi tracker for IT replacement 1 Lausanne 9. December 2010.
1 500cm 83cm 248cm TPC DETECTOR 88us 1MIP = 4.8 fC = 3 x10 4 e Dynamic : 30 MIP S / N = 30:1 1MIP = 4.8 fC = 3 x10 4 e Dynamic : 30 MIP S / N = 30:1 LATERAL.
E. Atkin, E. Malankin, V. Shumikhin NRNU MEPhI, Moscow 1.
With Real Detector: The MIP Apollo Go, NCU Taiwan Ped:  ADC cnts MIP: 39.0  12.6 ADC cnts S/N should be better with 3 time samples, better.
November 7th 2002Jim Libby (CERN/SLAC)1 Opposite Polarity Signals in Wide Pitch Sensors Jim Libby (CERN/SLAC) Introduction to the R&D in LHCb The test-beam.
RAD – The Radiation Assessment Detector for MSL Stephan Böttcher, CAU Kiel MSL/RAD Critical Design Review 7b – RAD Sensor Head Stephan Böttcher
ECAL electronics Guido Haefeli, Lausanne PEBS meeting 10.Jan
Preliminary Design of Calorimeter Electronics Shudi Gu June 2002.
Development of Readout ASIC for FPCCD Vertex Detector 01 October 2009 Kennosuke.Itagaki Tohoku University.
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
MR (7/7/05) T2K electronics Beam structure ~ 8 (9?) bunches / spill bunch width ~ 60 nsec bunch separation ~ 600 nsec spill duration ~ 5  sec Time between.
Beam diagnostics in the beamlines
25th June, 2003CMS Ecal MGPA first results1 MGPA first results testing begun 29 th May on bare die (packaging still underway) two chips looked at so far.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
CMS-GRPC status Imad Laktineh for the GRPC-CMS groups.
A 128-channel event-driven readout ASIC for the R 3 B Tracker TWEPP 2015, Lisbon Lawrence Jones ASIC Design Group Science and Technology Facilities Council.
Development of the Readout ASIC for Muon Chambers E. Atkin, I. Bulbalkov, A. Voronin, V. Ivanov, P. Ivanov, E. Malankin, D. Normanov, V. Samsonov, V. Shumikhin,
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
ICPPA-2015 Moscow Oct ASIC for calorimetric measurements in astrophysical experiment NUCLEON (overview) E. Atkin1, A. Voronin1,2, D. Karmanov2,
7/28/2003DC/EC Review Aerogel Read out Electronics K. Ozawa, N. Kurihara, M. Inaba, H. Masui T. Sakaguchi, T. Matsumoto.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Investigation of crosstalk in the readout structure of the Beamcal K.Afanaciev.
Analog readout for the forward NC Calorimeter (W-Si) BNL, Physics, 06/06/30 E.Kistenev.
MuTr Chamber properties K.Shoji Kyoto Univ.. Measurement of MuTr raw signal Use oscilloscope & LabView Read 1 strip HV 1850V Gas mixture Ar:CO 2 :CF 4.
CBM 12 th Meeting, October 14-18, 2008, Dubna Present status of the first version of NIHAM TRD-FEE analogic CHIP Vasile Catanescu and Mihai Petrovici NIHAM.
1 Front-end electronic for Si-W calorimeter Sylvie Bondil Julien Fleury Christophe de La Taille Gisèle Martin Ludovic Raux.
November, 7, 2006 ECFA06, Valencia, Spain LumiCal & BeamCal readout and DAQ for the Very Forward Region Wojciech Wierba Institute of Nuclear Physics Polish.
ダイナミックレンジの大きな 電荷有感型前置増幅器の開発 M. Kurokawa a), H. Baba a), T. Gunji b), H. Hamagaki b), S. Hayashi b),T. Motobayashi a), H. Murakami a), A. Taketani a), M.
Oscar Alonso – Future Linear Colliders Spanish Network 2015 – XII Meeting - Barcelona, January 2015 O. Alonso, J. Canals, M. López, A. Vilà, A. Herms.
SAMURAI Si Detector M. Kurokawa a), H. Baba a), T. Gunji b), H. Hamagaki b), S. Hayashi b),T. Motobayashi a), H. Murakami a), A. Taketani a), M. Tanaka.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
A Forward Calorimeter (FoCal) as upgrade for the ALICE experiment at CERN S. Muhuri a, M. Reicher b and T. Tsuji c a Variable Energy Cyclotron Centre,
Analog Circuits Hiroyuki Murakami. CONTENTS Structure of analog circuits Development of wide linear range CSA system Problem of analog circuits How to.
Status of hardware activity in CNS Taku Gunji Center for Nuclear Study University of Tokyo 1.
Tuesday, 20 May 2003OPERA Collaboration Meeting - Gran Sasso1 Status of front-end electronics for the OPERA Target Tracker LAL Orsay S.BONDIL, J. BOUCROT,
Front End. Charge pre-amp and detector Voltage regulator. TOP side. Detector linear voltage regulator BOTTOM side. Charge pre-amp.
Understanding of SKIROC performance T. Frisson (LAL) On behalf of the SiW ECAL team Special thanks to the electronic and DAQ experts: Stéphane Callier,
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
Status of front-end electronics for the OPERA Target Tracker
Analysis of LumiCal data from the 2010 testbeam
Valerio Re Università di Bergamo and INFN, Pavia, Italy
Silicon microstrip detector for imaging of fast processes at high intensity synchrotron radiation beam. Budker INP V.Aulchenko1,2, L.Shekhtman1,2, B.Tolochko3,2,
KLOE II Inner Tracker FEE
A General Purpose Charge Readout Chip for TPC Applications
Evidence for Strongly Interacting Opaque Plasma
Front-end and VME / VXI readout electronics for ASICs
Activity report of FoCAL from CNS
INFN Pavia and University of Bergamo
Application of VATAGP7 ASICs in the Silicon detectors for the central tracker (forward part) S. Khabarov, A. Makankin, N. Zamiatin, ,
PSD Front-End-Electronics A.Ivashkin, V.Marin (INR, Moscow)
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
ILC Detector Activities in Korea
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
Status of n-XYTER read-out chain at GSI
SAMURAI Si detector Requirements overview
Charge measurement of STK
HVCMOS Detectors – Overview
« Floating Point » Charge Sensitive Amplifier
Simulation study for Forward Calorimeter in LHC-ALICE experiment
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Naohito Iwasa Dept. Phys., Tohoku Univ.
Pre-installation Tests of the LHCb Muon Chambers
Signal processing for High Granularity Calorimeter
Readout Electronics for Pixel Sensors
Readout Electronics for Pixel Sensors
Coincidence measurement of heavy ion and protons with SAMURAI
Readout Electronics for Pixel Sensors
Presentation transcript:

Wide Dynamic range readout preamplifier for Silicon Strip Sensor Atsushi Taketani, RIKEN M. Kurokawa, A. Takuma Rikkyo University T. Motobayashi, H. Murakami , K. Yoneda RIKEN Y. Togano GSI Requirements from experiments Methods Dual Gain preamp Variable Gain amp Summary

Requirements for SAMURAI Si detector system Coulomb breakup exp. proton SAMURAI heavy particle (z < 50) Definition of dynamic range upper limit / lower limit (= 4s) of detection proton rich particle up to 10050Sn Effective area ~ 9 cm × 9cm Position resolution ~ 1 mm Dynamic range of the electronics ~ 10^4 coincident measurement from proton (z = 1) to heavy ions (z ~ 50)  2500 Pileup of beam events

Some Idea Different gain preamp on different place Low gain for high Z particle High gain for proton Beam size may be bigger than HI-Proton separation Need high dynamic range preamp.

Response function Detector out ~ Z^2 Linear case: Large ADC bit Square ROOT : Good Log : Small separation at higher Z Z Z

Specification of a Si detector single-sided strip detector developed for GLAST satellite is employed Ref.) T. Ohsugi et al., “Design and properties of the GLAST flight silicon micro-strip sensors”, Nucl. Instr. and Methods, A541 (2005) 29 - 39. signals from 3 strips are grouped together on the PCB readout pitch = 228 mm × 3 = 684 mm number of signal channels / detector = 384 / 3 = 128 ch. total number of signal channels = 128 × 5 = 640 ch. 6 in. --> 325 mm

Architecture I: dual channel system Input charge is divided in proportion to the capacitance ratio between coupling capacitances Ch and Cl (Ch > Cl). Ref. ) N. Uematsu and S. Nishimura, “Development of silicon strip detector with wide-dynamic-range readout system from 20 keV to 4 GeV”, RIKEN Accel. Prog. Rep. 41, (2008) 151. Qh = Qin × Ch / (Ch + Cl) Log Vout Extended as much as the capacitance ratio high-gain channel CSA Ch Qin similar response with single channel system Cl low-gain channel CSA H Ql = Qin × Cl / (Ch + Cl) L Log Qin 4 pC 40 pC Ch = 10 × Cl

Output pulse shapes from the CSAs This part is implemented in first prototype Ch Cl L Chip and its test board TSMC 0.5 mm process chip size ~ 1.6 mm × 1.2 mm CSA

Result I: Dynamic range for a single channel CSA pulser 104 103 SA-HG ADC-H CSA 102 SA-LG ADC-L 101 ADC-H 5.2 fc 5.6 pc ADC-L 100 10-3 10-2 10-1 100 101 102 Definition of lower limit = 4s. 4.4 fC corresponds to 100 keV. Dynamic range ~ 10^3

Result II: Dynamic range for dual channel CSAs pulser 560 pF SA-HG ADC-H-H CSA SA-LG ADC-H-L Dynamic range ~ 10^4 10 times wider than that is obtained for the single channel usage CSA 56 pF SA-LG ADC-L-L 104 103 102 ADC-H-H 101 ADC-H-L 56 pc ADC-L-L 5.8 fc 100 10-3 10-2 10-1 100 101 102 Definition of lower limit = 4s

Variable gain Concept D1: Normal Si Diode Vdrop = 0.6V D2: Schottky Diode Vdrop = 0.3V Using different forward voltage drop.

Simulation and measurement

IC chip concept Difficult to make a Diode on CMOS chip. Use multiple comparators and CMOS switches Approximately square ROOT response. CMP. Vth1 SW1 R1 R0 Input Output AMP.

DC response

Large signal case Small Signal case

Summary Proton break up experiments need wide dynamic range Si Tracker for delta-E measurement We compared Linear, Log, and square root method. We have been developing dual gain preamplifier. We are developing ROOT amp. Submit Dec 2011. Will receive 2012 March.