CINDI workshop at BIRA:

Slides:



Advertisements
Similar presentations
Objective - To graph linear equations using the slope and y-intercept.
Advertisements

Warm Up… Solve each equation for y.
Goal: By the end of the lesson, students will be able to find the slope of a line from a graph.
Papers DSCD intercomparison: Journal: ATM based on 1996 template Core team: HKR, MVR, FW, MK Figures: MVR Tables: FW Deadline: May 2010 Campaign overview:
Section 4.7: Graphing Lines using Slope-Intercept Form Int. Math I.
Tutorial Excel and Equation Editor Given the following measurements of mass flow rate in a water pipe and the following properties and relationships: K=
1 1 Slide Simple Linear Regression Chapter 14 BA 303 – Spring 2011.
Proceedings and Report of the Expert Meeting: Arrangements Proceedings and Report of the Expert Meeting: Arrangements.
/graphing.html Video Watching Behavior: Feet in front of you on floor, voice level 0, you will take notes during this video,
MAXDOAS formaldehyde slant column measurements during CINDI: intercomparison and analysis improvement G. Pinardi, M. Van Roozendael, N. Abuhassan, C. Adams,
MTH 091 Section 13.1 The Rectangular Coordinate System Section 13.2 Graphing Linear Equations.
BIRA-IASB station report
Review of Building Multiple Regression Models Generalization of univariate linear regression models. One unit of data with a value of dependent variable.
Get out the Notes from Monday Feb. 4 th, Example 2: Consider the table below displaying the percentage of recorded music sales coming from music.
Chapter 22: Building Multiple Regression Models Generalization of univariate linear regression models. One unit of data with a value of dependent variable.
SECTIONS B Chapter 2. Objectives To draw scatter plots. To find and use prediction equations. Using a graphing calculator to graph lines of regression.
OMI Validation using the Pandora Spectrometer System Jay Herman, Nader Abuhassan, Alexander Cede 1.Validation of OMI satellite data for Ozone is fairly.
Unit 3 Section : Regression Lines on the TI  Step 1: Enter the scatter plot data into L1 and L2  Step 2 : Plot your scatter plot  Remember.
SAOZ at Rothera 2. MAX-DOAS at Halley 3. SAOZ spare to Halley Howard Roscoe (BAS), NDACC UV-visible Workshop, BIRA, 3-4 July UV-visible sensors.
EOS-AURA Science Team Meeting September 2009, Leiden Comparison of NO 2 profiles derived from MAX-DOAS measurements and model simulations.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
First results of the aerosol profiling group IUP Heidelberg BIRA-IASB MPIC Mainz IUP Bremen JAMSTEC WSU KNMI NIWA Univ. Leicester PSI TNO RIVM KNMI.
Semester 1 Final Review D Plot the point (4, -2) in the coordinate plane. (Lesson 4.1) Name the quadrant the point is in.
$200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200 $400 $600 $800 $1000 $200.
Slopes (G.3 a,b) HOMEWORK (day 14):
Goal: Feedback Loop Cindy Transition slide - placeholder
Since all points on the x-axis have a y-coordinate of 0, to find x-intercept, let y = 0 and solve for x Since all points on the y-axis have an x-coordinate.
13.4 Graphing Lines in Slope-Intercept Form
Unit 2 Day 3: Graphing Using Slope-Intercept Form
Today we will graph linear equations in slope intercept form.
Representing Motion Graphically
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Integrated Rate Law.
Communicating Uncertainty in Measurement
2.4 Linear Functions: Graphs and Slope
PARENT GRAPH FOR LINEAR EQUATIONS
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
2.5 Linear Equations.
Unit 4. Day 5..
Quick Graphs Using Slope-Intercept Form
Quick Graphs of Linear Equations
Physics 1 – Aug 30, 2016 P3 Challenge – Do Now (on slips of paper)
GRAPH INTERPRETATION POSITION vs TIME GRAPH.
Graphing Expectations
y x y = x + 2 y = x + 4 y = x – 1 y = -x – 3 y = 2x y = ½x y = 3x + 1
Standardized versus Unstandardized Regression Coefficients
Section 2: Linear Regression.
Day 87 – Graphing & Tables for Linear and Exponential Functions
Integrated Rate Law.
Write the equation for the following slope and y-intercept:
Ordered pairs: ( , ) ( , ) ( , ) Ordered pairs: ( , ) ( , ) ( , )
4.3 Graphing Equations of Lines From Intercepts
Lesson 4.4 Objective: To graph a line on a coordinate plane only using the slope and the y-intercept. Essential Question: How can I graph an equation without.
Slope  4 Ways: Graph Formula Ordered Pairs Table.
Do Now 2/6/12 In your notebook, define the word INTERCEPT in your own words. Then graph the equation below by making a table. 2x + 3y = 12. x
4.2 Part 2 Horizontal and Vertical Lines
Presentation of GSICS Inter-Calibration Results - Web Displays
Warm Up Unit 1 Review  is a term used in geometry to describe a function that moves an object a certain distance. The object is not altered in any other.
y x y = x + 2 y = x + 4 y = x – 1 y = 6x – 3 y = 2x y = ½x y = 3x + 1
Common Core #12 Part 2 Tell me everything you know about the graph:
A medical researcher wishes to determine how the dosage (in mg) of a drug affects the heart rate of the patient. Find the correlation coefficient & interpret.
7.3 Linear Equations and Their Graphs
Chapter 5: Graphs & Functions
5-3 slope-intercept form
Section 4.5 The Slope of a Line Goal: Find the slope of a line.
Chapter 1: What is the difference?
Line Graphs.
Ch 4.2 & 4.3 Slope-Intercept Method
1: Slope from Equations Y = 8x – 4 B) y = 6 – 7x
Graphing using Slope-Intercept Form
Presentation transcript:

CINDI workshop at BIRA: Results of the semi-blind intercomparison of NO2 slant columns 1 Howard Roscoe (BAS), Caroline Fayt (BIRA), and all the CINDI participants BIRA, 10 March 2010

CINDI workshop at BIRA: Results of the semi-blind intercomparison of NO2 slant columns 1 Howard Roscoe (BAS), Caroline Fayt (BIRA), and all the CINDI participants BIRA, 10 March 2010 • graphs of slant columns (each day, elevation) • graphs of relative differences (each day, elevation) • graphs of regressions (each instrument, day, elevation) • tables of differences & regression results (each instrument) • table of mean regression slope & error vs inst. & elevation • graph of mean regression slope & error vs inst. & elevation

CINDI workshop at BIRA: What was at CINDI? 1

Instruments on the Remote Sensing Site (RSS)

CINDI workshop at BIRA: • graphs of slant columns (each day, elevation) 1

CINDI workshop at BIRA: • graphs of slant columns (each day, elevation) 1

CINDI workshop at BIRA: • graphs of slant columns (each day, elevation) 1

CINDI workshop at BIRA: • graphs of slant columns (each day, elevation) 1

CINDI workshop at BIRA: • graphs of slant columns (each day, elevation) 1

CINDI workshop at BIRA: • graphs of slant columns (each day, elevation) 1

CINDI workshop at BIRA: • graphs of slant columns (each day, elevation) 1

CINDI workshop at BIRA: • graphs of relative differences (each day, elevation) 1

CINDI workshop at BIRA: • graphs of relative differences (each day, elevation) 1

CINDI workshop at BIRA: • graphs of relative differences (each day, elevation) 1

CINDI workshop at BIRA: • graphs of regressions (each instrument, day, elevation) 1

CINDI workshop at BIRA: • graphs of regressions (each instrument, day, elevation) 1

CINDI workshop at BIRA: • graphs of regressions (each instrument, day, elevation) 1

CINDI workshop at BIRA: • tables of differences & regression results (each instrument) 1 RelMeanTable_BIRA_MAXVIS.asc Mean(2) Std(2) Mean(4) Std(4) Mean(8) Std(8) Mean(15) Std(15) Mean(30) Std(30) Mean(90) Std(90) 20090615 NaN NaN -5.913e-001 7.850e+000 5.402e-001 5.998e+000 2.558e+000 1.014e+001 4.540e+000 1.222e+001 -6.040e+000 1.498e+002 20090616 NaN NaN -1.814e-001 8.467e+000 -3.040e-002 1.451e+001 -5.236e+000 1.477e+001 -3.678e+000 2.752e+001 3.613e+001 2.458e+002 20090617 3.191e+000 8.837e+000 3.559e-001 9.973e+000 6.220e-002 6.356e+000 2.195e+000 7.631e+000 9.058e+000 2.087e+001 2.107e+001 6.153e+001 20090618 -6.182e+000 1.216e+001 -3.196e+000 9.616e+000 -9.323e-001 5.312e+000 -7.441e+000 1.130e+001 -1.794e+001 2.382e+001 -1.491e+001 5.606e+001 20090619 -4.259e+000 9.061e+000 -1.470e+000 8.830e+000 -8.311e-001 7.279e+000 5.403e+000 3.868e+001 -2.246e+001 1.725e+002 5.931e+000 4.439e+001 20090620 -5.057e+000 5.832e+000 -5.129e+000 7.088e+000 -4.034e+000 6.784e+000 -2.589e+000 1.011e+001 -4.466e-001 2.122e+001 -1.223e+001 2.640e+001 20090621 -2.718e+000 7.783e+000 -2.582e+000 8.762e+000 -2.876e+000 1.050e+001 9.106e-001 1.510e+001 2.194e+001 1.027e+002 -2.287e+001 1.135e+002 20090622 -2.376e+000 9.797e+000 -4.976e+000 9.625e+000 -5.649e+000 1.056e+001 -3.312e+000 1.049e+001 2.160e+001 7.384e+001 -4.285e+000 3.830e+001 20090623 -7.719e+000 5.558e+000 -4.203e+000 4.364e+000 -3.333e+000 6.784e+000 -3.997e+000 9.800e+000 3.649e+000 2.861e+001 -4.879e+000 1.845e+002 20090624 -2.283e+000 4.580e+000 -1.468e+000 6.148e+000 -4.418e+000 8.886e+000 -2.525e+000 6.900e+000 -2.485e+000 1.359e+001 6.161e+002 3.586e+003 20090625 -3.852e+000 9.593e+000 -2.532e+000 5.694e+000 -4.424e+000 4.977e+000 -2.473e+000 6.359e+000 1.655e+000 1.501e+001 -1.717e+002 1.039e+003 20090626 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN RegTable_BIRA_MAXVIS.asc slope(2) inter(2) slope(4) inter(4) slope(8) inter(8) slope(15) inter(15) slope(30) inter(30) slope(90) inter(90) 20090615 NaN NaN 9.317e-001 4.420e+015 9.498e-001 3.317e+015 9.523e-001 2.594e+015 9.768e-001 1.217e+015 1.005e+000 1.667e+014 20090616 NaN NaN 9.240e-001 5.631e+015 9.678e-001 1.598e+015 9.414e-001 5.986e+014 8.509e-001 2.593e+015 9.744e-001 -4.985e+014 20090617 9.119e-001 1.206e+016 9.236e-001 5.896e+015 1.011e+000 -7.557e+014 9.829e-001 1.352e+015 1.257e+000 -3.164e+015 1.011e+000 8.257e+014 20090618 1.008e+000 -9.235e+015 8.939e-001 7.772e+015 9.840e-001 6.989e+014 9.314e-001 1.582e+014 9.252e-001 -1.422e+015 9.979e-001 5.935e+014 20090619 9.952e-001 -2.806e+015 9.812e-001 7.363e+013 9.487e-001 1.493e+015 7.868e-001 4.665e+015 8.619e-001 2.317e+015 1.046e+000 9.322e+014 20090620 9.352e-001 5.795e+014 9.620e-001 -6.499e+014 9.125e-001 1.304e+015 8.797e-001 1.539e+015 1.067e+000 -8.706e+014 1.064e+000 -1.046e+015 20090621 9.263e-001 1.644e+015 9.716e-001 2.431e+014 9.689e-001 2.939e+014 9.816e-001 3.486e+014 1.079e+000 -3.084e+014 1.019e+000 9.723e+014 20090622 9.464e-001 3.030e+015 9.157e-001 2.228e+015 9.654e-001 -9.486e+014 8.699e-001 2.015e+015 9.399e-001 1.317e+015 1.037e+000 -1.300e+014 20090623 9.161e-001 5.206e+014 9.041e-001 2.786e+015 8.827e-001 2.634e+015 8.740e-001 1.702e+015 8.320e-001 1.532e+015 1.140e+000 -4.619e+014 20090624 9.595e-001 1.236e+015 9.075e-001 3.862e+015 9.027e-001 1.849e+015 9.365e-001 7.363e+014 9.733e-001 -1.120e+014 1.005e+000 -9.390e+014 20090625 8.160e-001 1.172e+016 8.998e-001 4.342e+015 9.028e-001 2.178e+015 9.442e-001 6.826e+014 9.121e-001 1.089e+015 9.758e-001 6.455e+014 20090626 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

CINDI workshop at BIRA: • table of mean regression slope & error versus instrument & elevation 1 mean(2) std(2) mean(4) std(4) mean(8) std(8) mean(15) std(15) mean(30) std(30) mean(90) std(90) WSU(MFDOAS) 1.034e+000 7.433e-003 1.017e+000 8.275e-003 1.022e+000 8.011e-003 9.970e-001 8.653e-003 9.648e-001 9.018e-003 9.468e-001 1.251e-002 BIRA(MAXVIS) 9.348e-001 1.315e-002 9.441e-001 1.024e-002 9.795e-001 9.789e-003 9.287e-001 1.125e-002 9.337e-001 1.603e-002 1.010e+000 7.461e-003 GIST(intl1) 7.373e-001 1.241e-002 8.544e-001 1.138e-002 9.011e-001 1.266e-002 9.325e-001 3.168e-002 9.111e-001 1.404e-002 9.346e-001 1.988e-002 IUPHD(inst1) 7.704e-001 1.021e-002 8.585e-001 6.798e-003 8.858e-001 5.811e-003 9.162e-001 5.539e-003 9.496e-001 6.998e-003 9.016e-001 6.934e-003 INTA(NEVA2) 1.002e+000 1.720e-002 9.221e-001 1.491e-002 8.989e-001 2.099e-002 9.553e-001 2.753e-002 9.175e-001 4.014e-002 9.785e-001 6.279e-003 JAMSTEC(inst1) 7.954e-001 2.765e-002 8.747e-001 2.152e-002 7.883e-001 2.000e-002 7.412e-001 1.631e-002 6.461e-001 1.653e-002 5.720e-001 1.403e-002 KNMI(MMD2rss) 8.947e-001 6.890e-003 8.857e-001 6.664e-003 8.775e-001 5.717e-003 8.436e-001 6.435e-003 8.330e-001 8.195e-003 7.600e-001 1.571e-002 LEIC(MAX1) 7.851e-001 9.633e-003 8.299e-001 1.044e-002 8.375e-001 1.540e-002 8.094e-001 1.278e-002 7.740e-001 9.947e-003 8.617e-001 1.084e-002 MPI(Mainz) 7.543e-001 1.037e-002 8.438e-001 9.281e-003 8.757e-001 1.171e-002 8.063e-001 1.247e-002 9.118e-001 1.788e-002 1.037e+000 2.656e-002 NASA(Pandora3) 9.671e-001 4.039e-003 9.416e-001 3.606e-003 9.269e-001 3.408e-003 8.894e-001 4.009e-003 9.106e-001 3.814e-003 9.271e-001 5.575e-003 NIWA(M10) 9.944e-001 7.016e-003 9.845e-001 9.558e-003 1.013e+000 1.195e-002 7.820e-001 1.411e-002 9.783e-001 1.861e-002 9.459e-001 7.371e-003 TORONTO(utgbs) NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 9.644e-001 7.156e-003 CNRS(saoz) NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 9.363e-001 4.836e-003

CINDI workshop at BIRA: • table of mean regression slope versus instrument & elevation 1 mean(2) mean(4) mean(8) mean(15) mean(30) mean(90) WSU(MFDOAS) 1.034e+00 1.017e+00 1.022e+00 9.970e-01 9.648e-01 9.468e-01 BIRA(MAXVIS) 9.348e-01 9.441e-01 9.795e-01 9.287e-01 9.337e-01 1.010e+00 GIST(intl1) 7.373e-01 8.544e-01 9.011e-01 9.325e-01 9.111e-01 9.346e-01 IUPHD(inst1) 7.704e-01 8.585e-01 8.858e-01 9.162e-01 9.496e-01 9.016e-01 INTA(NEVA2) 1.002e+00 9.221e-01 8.989e-01 9.553e-01 9.175e-01 9.785e-01 JAMSTEC(inst1) 7.954e-01 8.747e-01 7.883e-01 7.412e-01 6.461e-01 5.720e-01 KNMI(MMD2rss) 8.947e-01 8.857e-01 8.775e-01 8.436e-01 8.330e-01 7.600e-01 LEIC(MAX1) 7.851e-01 8.299e-01 8.375e-01 8.094e-01 7.740e-01 8.617e-01 MPI(Mainz) 7.543e-01 8.438e-01 8.757e-01 8.063e-01 9.118e-01 1.037e+00 NASA(Pandora3) 9.671e-01 9.416e-01 9.269e-01 8.894e-01 9.106e-01 9.271e-01 NIWA(M10) 9.944e-01 9.845e-01 1.013e+00 7.820e-01 9.783e-01 9.459e-01 TORONTO(utgbs) NaN NaN NaN NaN NaN 9.644e-01 CNRS(saoz) NaN NaN NaN NaN NaN 9.363e-01

CINDI workshop at BIRA: • graphs of mean regression slope & error versus instrument & elevation 1

CINDI workshop at BIRA: 1

CINDI workshop at BIRA: 1

CINDI workshop at BIRA: 1 NIWA regressions slope(2) slope(15) inter(15) 20090616 6.286e-001 1.840e+016 20090617 1.047e+000 -2.239e+015 20090618 9.536e-001 9.269e+014 20090619 8.857e-001 2.739e+015 20090620 9.882e-001 -1.295e+014 20090621 1.029e+000 -1.224e+015 20090622 9.559e-001 -6.815e+014 20090623 8.927e-001 5.371e+014 20090624 8.742e-001 1.438e+015 20090625 9.281e-001 7.032e+014 20090626 9.363e-001 9.341e+014

CINDI workshop at BIRA: 1 NIWA regressions slope(2) slope(15) inter(15) 20090616 6.286e-001 1.840e+016 20090617 1.047e+000 -2.239e+015 20090618 9.536e-001 9.269e+014 20090619 8.857e-001 2.739e+015 20090620 9.882e-001 -1.295e+014 20090621 1.029e+000 -1.224e+015 20090622 9.559e-001 -6.815e+014 20090623 8.927e-001 5.371e+014 20090624 8.742e-001 1.438e+015 20090625 9.281e-001 7.032e+014 20090626 9.363e-001 9.341e+014

CINDI workshop at BIRA: what next for the paper? 1

CINDI workshop at KNMI: Decisions for the future of the intercomparison results - the paper 1 • which journal ? • is the paper from 1996 a good template ? • who will be the core team ? • who will lead the writing ? • who will compile the plots ? • who will compile the tables ? • what is the timetable ?

CINDI workshop at KNMI: Decisions for the future of the intercomparison results - the paper 1 • which journal ? - AMT ? • is the paper from 1996 a good template ? • who will be the core team ? • who will lead the writing ? • who will compile the plots ? • who will compile the tables ? • what is the timetable ?

CINDI workshop at KNMI: Decisions for the future of the intercomparison results - the paper 1 A. Table of instruments and specifications

CINDI workshop at KNMI: Decisions for the future of the intercomparison results - the paper 1 B. List of cross sections C. Display the comparisons

CINDI workshop at KNMI: Decisions for the future of the intercomparison results - the paper 1 • which journal ? - AMT ? • is the paper from 1996 a good template ? - a good start • who will be the core team ? - HKR, MVR, FW, KNMI rep? stratospheric rep? NDACC rep? • who will lead the writing ? - HKR ? • who will compile the plots ? - MVR or FW ? • who will compile the tables ? - FW or MVR ? • what is the timetable ? - 1st draft by Dec 09 ?

CINDI workshop at BIRA: what next for the paper? 1 • which journal ? - AMT • is the paper from 1996 a good template ? - a good start • who will be the core team ? - MVR, HKR, FW, KNMI rep stratospheric rep? NDACC rep? • who will lead the writing ? - HKR ? • who will compile the plots ? - Caroline (BIRA) & HKR • who will compile the tables ? - FW or MVR ? • what is the timetable ? - 1st draft when ?