9.2 The Pythagorean Theorem

Slides:



Advertisements
Similar presentations
Bell Ringer.
Advertisements

Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
The Pythagorean Theorem Holt Geometry Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson Quiz Holt McDougal Geometry Pythagorean.
EXAMPLE 4 Find the length of a hypotenuse using two methods SOLUTION Find the length of the hypotenuse of the right triangle. Method 1: Use a Pythagorean.
The Pythagorean Theorem
9.2 The Pythagorean Theorem Geometry Mrs. Spitz Spring 2005.
EXAMPLE 1 Find the length of a hypotenuse SOLUTION Find the length of the hypotenuse of the right triangle. (hypotenuse) 2 = (leg) 2 + (leg) 2 Pythagorean.
EXAMPLE 1 Find the length of a hypotenuse SOLUTION Find the length of the hypotenuse of the right triangle. (hypotenuse) 2 = (leg) 2 + (leg) 2 Pythagorean.
12.3 The Pythagorean Theorem CORD Mrs. Spitz Spring 2007.
Slide #1.
The Pythagorean Theorem
7.1 The Pythagorean Theorem
The Pythagorean Theorem
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
Benchmark 40 I can find the missing side of a right triangle using the Pythagorean Theorem.
Chapter 7.1 & 7.2 Notes: The Pythagorean Theorem and its Converse
Pythagorean Theorem 5.4. Learn the Pythagorean Theorem. Define Pythagorean triple. Learn the Pythagorean Inequality. Solve problems with the Pythagorean.
Apply the Pythagorean Theorem
The Pythagorean Theorem
9.2 The Pythagorean Theorem Geometry Mrs. Gibson Spring 2011.
1. Solve x2 = 100. ANSWER 10, –10 2. Solve x2 + 9 = 25. ANSWER 4, –4
The Pythagorean Theorem and Its Converse OBJECTIVE: To use the Pythagorean Theorem and its converse BIG IDEAS: MEASUREMENT REASONING AND PROOF ESSENTIAL.
Chapter 1: Square Roots and the Pythagorean Theorem Unit Review.
Topic 10 – Lesson 9-1 and 9-2. Objectives Define and identify hypotenuse and leg in a right triangle Determine the length of one leg of a right triangle.
Warm-Up Exercises 2. Solve x = 25. ANSWER 10, –10 ANSWER 4, –4 1. Solve x 2 = 100. ANSWER Simplify 20.
9.2 The Pythagorean Theorem
9.4 Special Right Triangles
7.1 Apply the Pythagorean Theorem.  Use the Pythagorean Theorem  Recognize Pythagorean Triples.
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
8.1 Pythagorean Theorem Understand how to use the Pythagorean Theorem and its converse to solve problems Do Now: 1. An entertainment center is 52 in. wide.
Slide 9-1 Copyright © 2014 Pearson Education, Inc. 5.4 The Pythagorean Theorem CHAPTER 5.
Guided Notes/Practice
Warm Up Classify each triangle by its angle measures. 3. Simplify
Warm Up Simplify the square roots
1. Solve x2 = 100. ANSWER 10, –10 2. Solve x2 + 9 = 25. ANSWER 4, –4
9.4 Special Right Triangles
7-2 The Pythagorean Theorem
Sect. 9.2 & 9.3 The Pythagorean Theorem
7.1 Apply the Pythagorean Theorem
The Pythagorean Theorem
Click to edit Master subtitle style
Section 1 – Apply the Pythagorean Theorem
Chapter 9 Right Triangles and Trigonometry
Chapter 9 Right Triangles and Trigonometry
Objectives Use the Pythagorean Theorem and its converse to solve problems. Use Pythagorean inequalities to classify triangles.
9.2 The Pythagorean Theorem
9-2 Pythagorean Theorem.
The Pythagorean Theorem is probably the most famous mathematical relationship. As you learned in Lesson 1-6, it states that in a right triangle, the sum.
Chapter 10 Section 10.1 Pythagorean Theorem.
The Pythagorean Theorem
PROVING THE PYTHAGOREAN THEOREM
The Pythagorean Theorem
9.2 The Pythagorean Theorem
Objectives/Assignment
10.3 and 10.4 Pythagorean Theorem
7-1 and 7-2: Apply the Pythagorean Theorem
7.1 Apply the Pythagorean theorem.
Drill The two legs of a right triangle are 6 and 8, find the hypotenuse. 2) Would these three sides 6, 8, 11 form a right triangle? 3) Find the area of.
The Pythagorean Theorem
The Pythagorean Theorem
11.7 and 11.8 Pythagorean Thm..
The Pythagorean Theorem
Remember Rough Draft is due Quiz Corrections are due
The Pythagorean Theorem and Its Converse
The Pythagorean Theorem
9.4 Special Right Triangles
9.2 The Pythagorean Theorem
1. Solve x2 = 100. ANSWER 10, –10 2. Solve x2 + 9 = 25. ANSWER 4, –4
Right Triangles TC2MA234.
Right Triangles and Trigonometry
Presentation transcript:

9.2 The Pythagorean Theorem Geometry

Objectives/Assignment Prove the Pythagorean Theorem Use the Pythagorean Theorem to solve real-life problems such as determining how far a ladder will reach.

History Lesson Around the 6th century BC, the Greek mathematician Pythagorus founded a school for the study of philosophy, mathematics and science. Many people believe that an early proof of the Pythagorean Theorem came from this school. Today, the Pythagorean Theorem is one of the most famous theorems in geometry. Over 100 different proofs now exist.

Proving the Pythagorean Theorem In this lesson, you will study one of the most famous theorems in mathematics—the Pythagorean Theorem. The relationship it describes has been known for thousands of years.

Theorem 9.4: Pythagorean Theorem In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the legs. c2 = a2 + b2

Using the Pythagorean Theorem A Pythagorean triple is a set of three positive integers a, b, and c that satisfy the equation c2 = a2 + b2 For example, the integers 3, 4 and 5 form a Pythagorean Triple because 52 = 32 + 42.

Ex. 1: Finding the length of the hypotenuse. Find the length of the hypotenuse of the right triangle. Tell whether the sides lengths form a Pythagorean Triple.

Solution: Pythagorean Theorem x2 = 52 + 122 Substitute values. (hypotenuse)2 = (leg)2 + (leg)2 x2 = 52 + 122 x2 = 25 + 144 x2 = 169 x = 13 Because the side lengths 5, 12 and 13 are integers, they form a Pythagorean Triple. Many right triangles have side lengths that do not form a Pythagorean Triple as shown next slide. Pythagorean Theorem Substitute values. Multiply Add Find the positive square root. Note: There are no negative square roots until you get to Algebra II and introduced to “imaginary numbers.”

Ex. 2: Finding the Length of a Leg Find the length of the leg of the right triangle.

Solution: (hypotenuse)2 = (leg)2 + (leg)2 142 = 72 + x2 196 = 49 + x2 147 = x2 √147 = x √49 ∙ √3 = x 7√3 = x Pythagorean Theorem Substitute values. Multiply Subtract 49 from each side Find the positive square root. Use Product property Simplify the radical. In example 2, the side length was written as a radical in the simplest form. In real-life problems, it is often more convenient to use a calculator to write a decimal approximation of the side length. For instance, in Example 2, x = 7 ∙√3 ≈ 12.1

Ex. 3: Finding the area of a triangle Find the area of the triangle to the nearest tenth of a meter. You are given that the base of the triangle is 10 meters, but you do not know the height. Because the triangle is isosceles, it can be divided into two congruent triangles with the given dimensions. Use the Pythagorean Theorem to find the value of h.

Solution: Now find the area of the original triangle. Steps: (hypotenuse)2 = (leg)2 + (leg)2 72 = 52 + h2 49 = 25 + h2 24 = h2 √24 = h Reason: Pythagorean Theorem Substitute values. Multiply Subtract 25 both sides Find the positive square root. Now find the area of the original triangle.

Area of a Triangle Area = ½ bh = ½ (10)(√24) ≈ 24.5 m2 The area of the triangle is about 24.5 m2

Ex. 4: Indirect Measurement Support Beam: The skyscrapers shown on page 535 are connected by a skywalk with support beams. You can use the Pythagorean Theorem to find the approximate length of each support beam.

Each support beam forms the hypotenuse of a right triangle Each support beam forms the hypotenuse of a right triangle. The right triangles are congruent, so the support beams are the same length. Use the Pythagorean Theorem to show the length of each support beam (x).

Solution: Pythagorean Theorem x2 = (23.26)2 + (47.57)2 (hypotenuse)2 = (leg)2 + (leg)2 x2 = (23.26)2 + (47.57)2 x2 = √ (23.26)2 + (47.57)2 x ≈ 13 Pythagorean Theorem Substitute values. Multiply and find the positive square root. Use a calculator to approximate.