Status of the MAX IV Short Pulse Facility

Slides:



Advertisements
Similar presentations
FEL and linac plans at MAX IV laboratory
Advertisements

Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
KEK : Novel Accelerator TYL Workshop M. Yoshida, M. Nozaki, K. Koyama, High energy research organization (KEK) -Collaboration -IZEST (CEA) :
Radiation Physics | ELBE | SRF Photo Injector for Electron- Laser Interaction LA 3 NET conference: Laser applications at accelerators, Mallorca,
J. Rudolph, Helmholtz-Zentrum Berlin EuCARD 2nd ANNUAL MEETING Slice emittance measurements at the ELBE superconducting RF photoinjector.
Tessa Charles Australian Synchrotron / Monash University 1 Bunch Compression Schemes for X-band FELs.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
Coherent Radiation from High-Current Electron Beams of a Linear Accelerator and Its Applications S. Okuda ISIR, Osaka Univ Research Institute.
Particle-Driven Plasma Wakefield Acceleration James Holloway University College London, London, UK PhD Supervisors: Professor Matthew wing University College.
Before aperture After aperture Faraday Cup Trigger Photodiode Laser Energy Meter Phosphor Screen Solenoids Successful Initial X-Band Photoinjector Electron.
FEL Beam Dynami cs FEL Beam Dynamics T. Limberg FEL driver linac operation with very short electron bunches.
POSTECH PAL Development of S-band RF gun and advanced diagnostics in PAL 박용운 (Yong Woon Park, Ph.D.) 포항 가속기 연구소 (Pohang Accelerator Laboratory, PAL) 포항공과대학교.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Low Emittance RF Gun Developments for PAL-XFEL
~ gun3.9 GHz cavity Bunch compressor 3 ILC cryomodules 45 deg. spectro injector main linac user area disp. area transport line Overview of.
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
Proton Driver: Status and Plans C.R. Prior ASTeC Intense Beams Group, Rutherford Appleton Laboratory.
FLASH II. The results from FLASH II tests Sven Ackermann FEL seminar Hamburg, April 23 th, 2013.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
Optics considerations for ERL test facilities Bruno Muratori ASTeC Daresbury Laboratory (M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith,
Electron Sources for ERLs – Requirements and First Ideas Andrew Burrill FLS 2012 “The workshop is intended to discuss technologies appropriate for a next.
People Xavier Stragier Marnix van der Wiel (AccTec) Willem op ‘t Root Jom Luiten Walter van Dijk Seth Brussaard Walter Knulst (TUDelft) Fred Kiewiet Eddy.
Twin bunches at FACET-II Zhen Zhang, Zhirong Huang, Ago Marinelli … FACET-II accelerator physics workshop Oct. 12, 2015.
Future Circular Collider Study Kickoff Meeting CERN ERL TEST FACILITY STAGES AND OPTICS 12–15 February 2014, University of Geneva Alessandra Valloni.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev Helmholtz-Zentrum Berlin für Materialien und Energie The Femto-Science Factory: A Multi-turn ERL.
Construction, Commissioning, and Operation of Injector Test Facility (ITF) for the PAL-XFEL November 12, 2013 S. J. Park, J. H. Hong, C. K. Min, I. Y.
X-band Based FEL proposal
MAX IV linac overview and scope of automation Sara Thorin.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
B. Marchetti R. Assmann, U. Dorda, J. Grebenyuk, Y. Nie, J. Zhu Acknowledgements: C. Behrens, R. Brinkmann, K. Flöttmann, M. Hüning,
ESLS Workshop Nov 2015 MAX IV 3 GeV Ring Commissioning Pedro F. Tavares & Åke Andersson, on behalf of the whole MAX IV team.
SABER Longitudinal Tracking Studies P. Emma, K. Bane Mar. 1, 2006
S.M. Polozov & Ko., NRNU MEPhI
Multi-bunch Operation for LCLS, LCLS_II, LCLS_2025
Linac beam dynamics Linac dynamics : C. Bruni, S. Chancé, L. Garolfi,
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Sara Thorin, MAX IV Laboratory
8-10 June Institut Henri Poincaré, Paris, France
E-XFEL Status and First Beam Results
SLS-2 – Ugrade of the Swiss Light Source
Slice Parameter Measurements at the SwissFEL Injector Test Facility
Status and Interest of the X-ray FEL SINAP
Short pulse, low charge LCLS operation
Tango status at Elettra
Studies for Particle Driven Plasma Acceleration at PITZ
Paul Scherrer Institut
Injection facility for Novosibirsk Super Charm Tau Factory
Revised Commissioning Strategy
BC2 Commissioning Parameters
Review of Application to SASE-FELs
The Cornell High Brightness Injector
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
ERL working modes Georg Hoffstaetter, Professor Cornell University / CLASSE / SRF group & ERL effort High Current mode High Coherence mode High Buch charge.
What did we learn from TTF1 FEL?
CEPC Injector Damping Ring
G. Marcus, Y. Ding, J. Qiang 02/06/2017
Simulation Calculations
LCLS Commissioning Parameters
Advanced Research Electron Accelerator Laboratory
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
Modified Beam Parameter Range
Linac Physics, Diagnostics, and Commissioning Strategy P
LCLS FEL Parameters Heinz-Dieter Nuhn, SLAC / SSRL April 23, 2002
High Charge Low Emittance RF Gun for SuperKEKB
Proposal for Smith-Purcell radiation experiment at SPARC_LAB
Linac Design Update P. Emma LCLS DOE Review May 11, 2005 LCLS.
Electron Optics & Bunch Compression
Presentation transcript:

Status of the MAX IV Short Pulse Facility Sara Thorin

MAX IV SPF Linac Funded 2009 Inauguration summer 2016

MAX IV linac overview Thermionic RF gun Photo cathode RF gun Extraction 1.5 GeV BC1 @ 260 MeV Extraction 3 GeV SPF BC2 @ 3 GeV Full energy injection and top up operation for the two storage rings Energy 1.5 GeV/ 3GeV Injection frequency 10 Hz Charge 0.6-1 nC/shot Emittance 10 mm mrad Energy spread <0.2%

MAX IV linac overview Thermionic RF gun Photo cathode RF gun Extraction 1.5 GeV BC1 @ 260 MeV Extraction 3 GeV SPF BC2 @ 3 GeV Full energy injection and top up operation for the two storage rings High brightness driver for the Short Pulse Facility Energy 1.5 GeV/ 3GeV Injection frequency 10 Hz Charge 0.6-1 nC/shot Emittance 10 mm mrad Energy spread <0.2% Energy 3GeV Injection frequency 100 Hz Charge 100 pC Bunch length 100 fs Emittance 1 mm mrad Energy spread <0.4%

MAX IV linac overview Thermionic RF gun Photo cathode RF gun Extraction 1.5 GeV BC1 @ 260 MeV Extraction 3 GeV SPF BC2 @ 3 GeV Full energy injection and top up operation for the two storage rings High brightness driver for the Short Pulse Facility Energy 1.5 GeV/ 3GeV Injection frequency 10 Hz Charge 0.6-1 nC/shot Emittance 10 mm mrad Energy spread <0.2% Energy 3GeV Injection frequency 100 Hz Charge 100 pC Bunch length 100 fs Emittance 1 mm mrad Energy spread <0.4% Possible future Free Electron Laser

MAX IV Short Pulse Facility Thermionic RF gun Photo cathode RF gun Extraction 1.5 GeV BC1 @ 260 MeV Extraction 3 GeV SPF BC2 @ 3 GeV BC2 @ 3 GeV U FemtoMAX

MAX IV Short Pulse Facility Thermionic RF gun Photo cathode RF gun Extraction 1.5 GeV BC1 @ 260 MeV Extraction 3 GeV SPF BC2 @ 3 GeV Soft X-ray FEL beamline Linac extention + hard X-ray FEL Wakefield acceleration experiment BC2 @ 3 GeV U FemtoMAX

MAX IV Short Pulse Facility Thermionic RF gun Photo cathode RF gun Extraction 1.5 GeV BC1 @ 260 MeV Extraction 3 GeV SPF BC2 @ 3 GeV Soft X-ray FEL beamline Linac extention + hard X-ray FEL Wakefield acceleration experiment BC2 @ 3 GeV U FemtoMAX

High brightness gun Norm Emittance ~ 1.5 mm mrad @ 150 pC 1.6 cell UCLA-type RF gun Copper cathode 10 Hz/100Hz SLED Ti-sapphire laser, 263 nm Norm Emittance ~ 1.5 mm mrad @ 150 pC To improve emittance: Polish cathode Longitudinal laser pulse shaping Increase power in the gun

Bunch compressors – double achromats 2 4 6 8 10 12 X[m] -2 Y[m] quad dipole sext BC1 R56 > 0 T566 > 0 z E Emean BC1 BC2 R56 2.23 cm 2.89 mm T566 8.05 cm 6.76µm

Bunch compressors Why self linearising compression? economy reliability simplicity Why compression in double achromats? positive R56 (fixed) positive T566 for linearisation “weak” sextupoles for tuning symmetry → small energy depending matrix elements beam spreader 2 4 6 8 10 12 X[m] -2 Y[m] quad dipole sext BC1

Simulation results - SPF-pulse Gun – 1st linac: ASTRA Linac + compressors: ELEGANT Charge 100 pC Δt fwhm 100 fs Peak current 1.5 kA Compression factor 50 Slice εN 0.42 mm mrad Proj εN 0.55 mm mrad Emittance increase 5 % Slice ΔE/E 0.035 %

Simulation results - full compression Gun – 1st linac: ASTRA Linac + compressors: ELEGANT Charge 100 pC Δt fwhm 10 fs Peak current 14 kA Compression factor 500 Slice εN 1.5 mm mrad Proj εN 2.4 mm mrad Emittance increase (slice) 375 % Slice ΔE/E 0.25 %

Bunch compression measurements Sextupole influence on longitudinal bunch profile and bunch length Horn antenna Streak on BC2 screen

FemtoMAX beamline @ SPF Status – Focused beam on last screen Monochromators aligned and commissioned for 2-5 keV First test of the first X-bpm at FemtoMAX front end with ‘X-rays’, May 2015 Focused beam at sample position. Beamsize is 50 μm x 100 μm