Markus Nielbock studied physics in Düsseldorf and Bochum doctorate in Astrophysics 2001 (Ruhr-Universität Bochum) ESO fellow 2001 – 2003, SEST, La Silla, Chile post doc in Bochum 2003 – 2006 post doc at MPIA since December 2006 member of Herschel/PACS ICC (Instrument Control Centre) responsibilities: instrument commanding instrument lab and in-flight testing AOT verification and optimisation instrument calibration scientific verification data reduction optimisation
The HERSCHEL Dust Temperature Map of B 68 Markus Nielbock O. Krause, R. Launhardt, Z. Balog, J. Kainulainen, H. Linz, S. Ragan, J. Steinacker, A. Stutz, C. Risacher (SRON), Th. Henning MPIA PSF Group Retreat, Löwenstein, 27 October 2010
Barnard 68 starless core in Pipe Nebula (Ophiuchus) Markus Nielbock – The HERSCHEL Dust Temperature Map of B 68 Snake Nebula B72 Pipe Nebula B68 B69 B74 B71 B70
Barnard 68 – A few facts prototype starless core distance ca. 100 pc diameter ca. 6.5 arcmin (40000 AU = 0.2 pc) mass in literature: 0.7 – 2.1 M⊙ can be described as an isothermal Bonnor-Ebert sphere in hydrostatic equilibrium (Alves et al. 2001) oscillating (Lada et al. 2003), induced by external pressure (Redman et al. 2006) or core collision (Burkert & Alves 2009) molecule freeze-out in core centre (Bergin et al. 2002) Markus Nielbock – The HERSCHEL Dust Temperature Map of B 68
Barnard 68 – The data Markus Nielbock – The HERSCHEL Dust Temperature Map of B 68 Herschel PACS and SPIRE scan maps PACS standard data reduction up to level 1 + Scanamorphos (Roussel 2010) SPIRE standard data reduction + special drift correction (Bendo 2009) additional (sub)mm continuum data for SED fitting NIR extinction map (Alves et al. 2001) CO and N2H+ molecular line data
Barnard 68 – Results so far temperature gradient from 11 to 16 K peak column density 6.3x1022 cm-2 (averaged over 8'' pixel) total mass estimates: 2.9 M⊙ for the entire column density map 2.1 M⊙ for AV > 4 (equivalent to Alves et al. 2001) 1.0 M⊙ for dense core (NH > 3x1022 cm-2) C18O(1-0) depletion hole coincides with dust temperatures below 12 K and column densities above 5.5x1022 cm-2 Markus Nielbock – The HERSCHEL Dust Temperature Map of B 68
Barnard 68 - Outlook Challenges Future Work investigate influence of different data reduction schemes improve convolution of data using appropriate PSF models and kernels estimate background level and its impact on temperature maps Mad Map Scanamorphos Scanamorphos – Mad Map Markus Nielbock – The HERSCHEL Dust Temperature Map of B 68 Future Work include molecule freeze out derive proper 3D temperature and density distribution determine dust properties estimate balance of external and internal heating