Section 4.3 & 4.4: Proving s are Congruent Goals Identify figures and corresponding parts Prove that 2 are Anchors Identify and/or use properties of congruent and similar polygons Identify and/or use properties of triangles
Side-Side-Side (SSS) Postulate If N M P If R Q S Then Then we can say:
Given: W is the midpoint of QS PQ TS and PW TW Prove: PQW TSW Statements Reasons
Given: D is the midpoint of AC ABC is isosceles Prove: ABD CBD Statements Reasons
Side-Angle-Side (SAS) Postulate If P Q S If ) W X Y ) Then Then we can say:
Given: QRS is isosceles RT bisects QRS Prove: QRT SRT Statements Reasons
Given: BD and AE bisect each other Prove: ABC EDC Statements Reasons
Angle-Side-Angle (ASA) Postulate If ) R Q S N M P If Then Then we can say:
Given: B N RW bisects BN Prove: BRO NWO Statements Reasons
Given: 1 2 CD bisects BCE Prove: BCD ECD 3 4 2 Statements Reasons
Angle-Angle-Side (AAS) Theorem If P Q S W X Y ) If Then Then we can say:
Given: AD ║ EC , B is the mdpt of CD Prove: ABD EBC Statements Reasons
Given: AD ║ EC , B is the mdpt of CD Prove: ABD EBC Statements Reasons
Why Angle-Angle-Angle (AAA) Doesn’t Work 40 50 40 50
Why Side-Side-Angle (SSA) Doesn’t Work B C ( D F E (
Theorem 4.8: Hypotenuse-Leg (HL) Theorem If D A If Then B C E F Then we can say:
Given: RS QT QRT is isosceles Prove: QRS TRS Statements Reasons